• R/O
  • SSH

タグ
未設定

よく使われているワード(クリックで追加)

javac++androidlinuxc#windowsobjective-ccocoa誰得qtpythonphprubygameguibathyscaphec計画中(planning stage)翻訳omegatframeworktwitterdomtestvb.netdirectxゲームエンジンbtronarduinopreviewer

ファイル情報

Rev. 372bf58aa1eba13e378314c8b9d343fd7fd4210b
サイズ 5,530 バイト
日時 2013-06-25 02:04:38
作者 Lorenzo Isella
ログメッセージ

A code to carry out logistic regression in Python.
I still need to read and understand it and it may be possible that it can
be sped up/improved.

内容

__author__ = 'Miroslaw Horbal'
__email__ = 'miroslaw@gmail.com'
__date__ = '14-06-2013'

from numpy import array, hstack
from sklearn import metrics, cross_validation, linear_model
from scipy import sparse
from itertools import combinations

import numpy as np
import pandas as pd

SEED = 25

def group_data(data, degree=3, hash=hash):
    """ 
    numpy.array -> numpy.array
    
    Groups all columns of data into all combinations of triples
    """
    new_data = []
    m,n = data.shape
    for indicies in combinations(range(n), degree):
        new_data.append([hash(tuple(v)) for v in data[:,indicies]])
    return array(new_data).T

def OneHotEncoder(data, keymap=None):
     """
     OneHotEncoder takes data matrix with categorical columns and
     converts it to a sparse binary matrix.
     
     Returns sparse binary matrix and keymap mapping categories to indicies.
     If a keymap is supplied on input it will be used instead of creating one
     and any categories appearing in the data that are not in the keymap are
     ignored
     """
     if keymap is None:
          keymap = []
          for col in data.T:
               uniques = set(list(col))
               keymap.append(dict((key, i) for i, key in enumerate(uniques)))
     total_pts = data.shape[0]
     outdat = []
     for i, col in enumerate(data.T):
          km = keymap[i]
          num_labels = len(km)
          spmat = sparse.lil_matrix((total_pts, num_labels))
          for j, val in enumerate(col):
               if val in km:
                    spmat[j, km[val]] = 1
          outdat.append(spmat)
     outdat = sparse.hstack(outdat).tocsr()
     return outdat, keymap

def create_test_submission(filename, prediction):
    content = ['id,ACTION']
    for i, p in enumerate(prediction):
        content.append('%i,%f' %(i+1,p))
    f = open(filename, 'w')
    f.write('\n'.join(content))
    f.close()
    print 'Saved'

# This loop essentially from Paul's starter code
def cv_loop(X, y, model, N):
    mean_auc = 0.
    for i in range(N):
        X_train, X_cv, y_train, y_cv = cross_validation.train_test_split(
                                       X, y, test_size=.20, 
                                       random_state = i*SEED)
        model.fit(X_train, y_train)
        preds = model.predict_proba(X_cv)[:,1]
        auc = metrics.auc_score(y_cv, preds)
        print "AUC (fold %d/%d): %f" % (i + 1, N, auc)
        mean_auc += auc
    return mean_auc/N
    
def main(train='train.csv', test='test.csv', submit='logistic_pred.csv'):    
    print "Reading dataset..."
    train_data = pd.read_csv(train)
    test_data = pd.read_csv(test)
    all_data = np.vstack((train_data.ix[:,1:-1], test_data.ix[:,1:-1]))

    num_train = np.shape(train_data)[0]
    
    # Transform data
    print "Transforming data..."
    dp = group_data(all_data, degree=2) 
    dt = group_data(all_data, degree=3)

    y = array(train_data.ACTION)
    X = all_data[:num_train]
    X_2 = dp[:num_train]
    X_3 = dt[:num_train]

    X_test = all_data[num_train:]
    X_test_2 = dp[num_train:]
    X_test_3 = dt[num_train:]

    X_train_all = np.hstack((X, X_2, X_3))
    X_test_all = np.hstack((X_test, X_test_2, X_test_3))
    num_features = X_train_all.shape[1]
    
    model = linear_model.LogisticRegression()
    
    # Xts holds one hot encodings for each individual feature in memory
    # speeding up feature selection 
    Xts = [OneHotEncoder(X_train_all[:,[i]])[0] for i in range(num_features)]
    
    print "Performing greedy feature selection..."
    score_hist = []
    N = 10
    good_features = set([])
    # Greedy feature selection loop
    while len(score_hist) < 2 or score_hist[-1][0] > score_hist[-2][0]:
        scores = []
        for f in range(len(Xts)):
            if f not in good_features:
                feats = list(good_features) + [f]
                Xt = sparse.hstack([Xts[j] for j in feats]).tocsr()
                score = cv_loop(Xt, y, model, N)
                scores.append((score, f))
                print "Feature: %i Mean AUC: %f" % (f, score)
        good_features.add(sorted(scores)[-1][1])
        score_hist.append(sorted(scores)[-1])
        print "Current features: %s" % sorted(list(good_features))
    
    # Remove last added feature from good_features
    good_features.remove(score_hist[-1][1])
    good_features = sorted(list(good_features))
    print "Selected features %s" % good_features
    
    print "Performing hyperparameter selection..."
    # Hyperparameter selection loop
    score_hist = []
    Xt = sparse.hstack([Xts[j] for j in good_features]).tocsr()
    Cvals = np.logspace(-4, 4, 15, base=2)
    for C in Cvals:
        model.C = C
        score = cv_loop(Xt, y, model, N)
        score_hist.append((score,C))
        print "C: %f Mean AUC: %f" %(C, score)
    bestC = sorted(score_hist)[-1][1]
    print "Best C value: %f" % (bestC)
    
    print "Performing One Hot Encoding on entire dataset..."
    Xt = np.vstack((X_train_all[:,good_features], X_test_all[:,good_features]))
    Xt, keymap = OneHotEncoder(Xt)
    X_train = Xt[:num_train]
    X_test = Xt[num_train:]
    
    print "Training full model..."
    model.fit(X_train, y)
    
    print "Making prediction and saving results..."
    preds = model.predict_proba(X_test)[:,1]
    create_test_submission(submit, preds)
    
if __name__ == "__main__":
    args = { 'train':  'train.csv',
             'test':   'test.csv',
             'submit': 'logistic_regression_pred.csv' }
    main(**args)