Rev. | e86a15c89dc1d1dac4d97a7cd1fd2e86e89b6617 |
---|---|
サイズ | 4,955 バイト |
日時 | 2008-09-10 01:52:09 |
作者 | iselllo |
ログメッセージ | Minor modifications to the code, but CHECK the order of vectors and rotations. |
#! /usr/bin/env python
import numpy as n
import scipy as s
import scipy.linalg as slin
#I define some global variables (sequances, tuples, etc..) I will need for
_EPS = n.finfo(float).eps * 4.0
# axis sequences for Euler angles
_NEXT_AXIS = [1, 2, 0, 1] #BACKUP!
# _NEXT_AXIS = [2, 1, 0, 2]
_AXES2TUPLE = { # axes string -> (inner axis, parity, repetition, frame)
"sxyz": (0, 0, 0, 0), "sxyx": (0, 0, 1, 0), "sxzy": (0, 1, 0, 0),
"sxzx": (0, 1, 1, 0), "syzx": (1, 0, 0, 0), "syzy": (1, 0, 1, 0),
"syxz": (1, 1, 0, 0), "syxy": (1, 1, 1, 0), "szxy": (2, 0, 0, 0),
"szxz": (2, 0, 1, 0), "szyx": (2, 1, 0, 0), "szyz": (2, 1, 1, 0),
"rzyx": (0, 0, 0, 1), "rxyx": (0, 0, 1, 1), "ryzx": (0, 1, 0, 1),
"rxzx": (0, 1, 1, 1), "rxzy": (1, 0, 0, 1), "ryzy": (1, 0, 1, 1),
"rzxy": (1, 1, 0, 1), "ryxy": (1, 1, 1, 1), "ryxz": (2, 0, 0, 1),
"rzxz": (2, 0, 1, 1), "rxyz": (2, 1, 0, 1), "rzyz": (2, 1, 1, 1)}
_TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items())
def euler_from_rotation_matrix(matrix, axes='sxyz'):
"""Return Euler angles from rotation matrix for specified axis sequence.
matrix -- 3x3 or 4x4 rotation matrix
axes -- One of 24 axis sequences as string or encoded tuple
Note that many Euler angle triplets can describe one matrix.
"""
try:
firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
except (AttributeError, KeyError):
_TUPLE2AXES[axes]
firstaxis, parity, repetition, frame = axes
i = firstaxis
j = _NEXT_AXIS[i+parity]
k = _NEXT_AXIS[i-parity+1]
M = n.array(matrix, dtype=n.float64)[0:3, 0:3]
if repetition:
sy = s.sqrt(M[i,j]*M[i,j] + M[i,k]*M[i,k])
if sy > _EPS:
ax = s.arctan2( M[i,j], M[i,k])
ay = s.arctan2( sy, M[i,i])
az = s.arctan2( M[j,i], -M[k,i])
else:
ax = s.arctan2(-M[j,k], M[j,j])
ay = s.arctan2( sy, M[i,i])
az = 0.0
else:
cy = s.sqrt(M[i,i]*M[i,i] + M[j,i]*M[j,i])
if cy > _EPS:
ax = s.arctan2( M[k,j], M[k,k])
ay = s.arctan2(-M[k,i], cy)
az = s.arctan2( M[j,i], M[i,i])
else:
ax = s.arctan2(-M[j,k], M[j,j])
ay = s.arctan2(-M[k,i], cy)
az = 0.0
if parity: ax, ay, az = -ax, -ay, -az
if frame: ax, az = az, ax
return ax, ay, az
def normalize(vec):
norm_vec=vec/s.sqrt(s.dot(vec,vec.conj()))
return norm_vec
def angles_3D_normalized(vec1,vec2):
#calculates the angle between two NORMALIZED vectors in 3D
alpha=s.arccos(s.dot(vec1,vec2))
return alpha
#Now I generate TWO set of TWO vectors I will use for the rotation matrix
vec_ini_1=s.array([1.,0.,1.])
vec_ini_2=s.array([1.,0.,0.])
vec_ini_3=s.array([0.,1.,0.])
vec_fin_1=s.array([0.8536,-0.5,-0.1464])
vec_fin_2=s.array([0.5,-0.7071,0.5])
vec_fin_3=s.array([-0.5,-0.701,-0.5])
#Then I want to normalize them
vec_ini_1=normalize(vec_ini_1)
vec_ini_2=normalize(vec_ini_2)
vec_ini_3=normalize(vec_ini_3)
vec_fin_1=normalize(vec_fin_1)
vec_fin_2=normalize(vec_fin_2)
vec_fin_3=normalize(vec_fin_3)
def calc_euler_matrix(vec_ini_1,vec_ini_2,vec_ini_3,vec_fin_1,vec_fin_2,vec_fin_3):
#First normalize the vectors
vec_ini_1=normalize(vec_ini_1)
vec_ini_2=normalize(vec_ini_2)
vec_ini_3=normalize(vec_ini_3)
vec_fin_1=normalize(vec_fin_1)
vec_fin_2=normalize(vec_fin_2)
vec_fin_3=normalize(vec_fin_3)
X=s.zeros((3,3))
# xtest=s.zeros((3,3))
X[:,0]=vec_ini_1
X[:,1]=vec_ini_2
X[:,2]=vec_ini_3
X_prime=s.zeros((3,3))
X_prime[:,0]=vec_fin_1
X_prime[:,1]=vec_fin_2
X_prime[:,2]=vec_fin_3
#I call B=x'x^T
B=s.dot(X_prime,s.transpose(X))
#print "B is", B
#I call C=xx^T
C=s.dot(X,s.transpose(X))
#print "C is, ", C
#print "the determinant of C is, ", slin.det(C)
#Now I invert C and cal D=C^{-1}
D=slin.inv(C)
#print "D is, ", D
#Now I can calculate A
A=s.dot(B,D)
return A
print "vec_ini_1(2,3) and vec_fin_1(2,3) are, ", vec_ini_1,vec_ini_2,vec_ini_3, vec_fin_1,vec_fin_2,vec_fin_3
alpha_ini_12=angles_3D_normalized(vec_ini_1,vec_ini_2)
alpha_ini_13=angles_3D_normalized(vec_ini_1,vec_ini_3)
alpha_ini_23=angles_3D_normalized(vec_ini_2,vec_ini_3)
alpha_fin_12=angles_3D_normalized(vec_fin_1,vec_fin_2)
alpha_fin_13=angles_3D_normalized(vec_fin_1,vec_fin_3)
alpha_fin_23=angles_3D_normalized(vec_fin_2,vec_fin_3)
print "alpha_ini_12(13,23) is, ", alpha_ini_12 ,alpha_ini_13,alpha_ini_23
print "alpha_fin_12(13,23) is, ", alpha_fin_12 ,alpha_fin_13,alpha_fin_23
A=calc_euler_matrix(vec_ini_1,vec_ini_2,vec_ini_3,vec_fin_1,vec_fin_2,vec_fin_3)
print "the rotation matrix is, ", A
my_angles=euler_from_rotation_matrix(A, ('szyx'))
print "my_angles are, ", my_angles
print "So far so good"