リビジョン | 1c08913bd87dff3cf01e841552c14fece60cd54f (tree) |
---|---|
日時 | 2013-08-20 18:47:29 |
作者 | Mikiya Fujii <mikiya.fujii@gmai...> |
コミッター | Mikiya Fujii |
Refactoring: pow is replaced. #31850
git-svn-id: https://svn.sourceforge.jp/svnroot/molds/trunk@1476 1136aad2-a195-0410-b898-f5ea1d11b9d8
@@ -356,7 +356,7 @@ double Cndo2::GetDiatomCoreRepulsion1stDerivative(int indexAtomA, int indexAtomB | ||
356 | 356 | double distance = this->molecule->GetDistanceAtoms(indexAtomA, indexAtomB); |
357 | 357 | value = atomA.GetCoreCharge()*atomB.GetCoreCharge(); |
358 | 358 | value *= (atomA.GetXyz()[axisA] - atomB.GetXyz()[axisA])/distance; |
359 | - value *= -1.0/pow(distance,2.0); | |
359 | + value *= -1.0/(distance*distance); | |
360 | 360 | return value; |
361 | 361 | } |
362 | 362 |
@@ -393,7 +393,8 @@ double Cndo2::GetVdwDampingValue1stDerivative(double vdWDistance, double distanc | ||
393 | 393 | double dampingFactor = Parameters::GetInstance()->GetVdWDampingFactorSCF(); |
394 | 394 | return (dampingFactor/vdWDistance) |
395 | 395 | *exp(-1.0*dampingFactor*(distance/vdWDistance - 1.0)) |
396 | - *pow(1.0+exp(-1.0*dampingFactor*(distance/vdWDistance - 1.0)),-2.0); | |
396 | + /(1.0+exp(-1.0*dampingFactor*(distance/vdWDistance - 1.0))) | |
397 | + /(1.0+exp(-1.0*dampingFactor*(distance/vdWDistance - 1.0))); | |
397 | 398 | } |
398 | 399 | |
399 | 400 | // See damping function in (2) in [G_2004] ((11) in [G_2006]) |
@@ -402,8 +403,8 @@ double Cndo2::GetVdwDampingValue2ndDerivative(double vdWDistance, double distanc | ||
402 | 403 | double exponent = -1.0*dampingFactor*(distance/vdWDistance - 1.0); |
403 | 404 | double pre = dampingFactor/vdWDistance; |
404 | 405 | double dominator = 1.0+exp(exponent); |
405 | - return 2.0*pow(dominator,-3.0)*pre*pre*exp(2.0*exponent) | |
406 | - - pow(dominator,-2.0)*pre*pre*exp( exponent); | |
406 | + return 2.0*pre*pre*exp(2.0*exponent)/(dominator*dominator*dominator) | |
407 | + - pre*pre*exp( exponent)/(dominator*dominator); | |
407 | 408 | } |
408 | 409 | |
409 | 410 | // See (2) in [G_2004] ((11) in [G_2006]) |
@@ -416,7 +417,8 @@ double Cndo2::GetDiatomVdWCorrectionEnergy(int indexAtomA, int indexAtomB) const | ||
416 | 417 | /(atomA.GetVdWCoefficient()+atomB.GetVdWCoefficient()); |
417 | 418 | double damping = this->GetVdwDampingValue(vdWDistance, distance); |
418 | 419 | double scalingFactor = Parameters::GetInstance()->GetVdWScalingFactorSCF(); |
419 | - return -1.0*scalingFactor*vdWCoefficients*pow(distance,-6.0)*damping; | |
420 | + return -1.0*scalingFactor*vdWCoefficients*damping | |
421 | + /(distance*distance*distance*distance*distance*distance); | |
420 | 422 | } |
421 | 423 | |
422 | 424 | // First derivative of the vdW correction related to the coordinate of atom A. |
@@ -433,7 +435,9 @@ double Cndo2::GetDiatomVdWCorrection1stDerivative(int indexAtomA, int indexAtomB | ||
433 | 435 | double damping = this->GetVdwDampingValue(vdWDistance, distance); |
434 | 436 | double damping1stDerivative = this->GetVdwDampingValue1stDerivative(vdWDistance, distance); |
435 | 437 | double value=0.0; |
436 | - value += 6.0*pow(distance,-7.0)*damping - pow(distance,-6.0)*damping1stDerivative; | |
438 | + double tmp = distance*distance*distance*distance*distance*distance; | |
439 | + value += 6.0*damping/(tmp*distance) | |
440 | + -damping1stDerivative/tmp; | |
437 | 441 | value *= vdWCoefficients; |
438 | 442 | value *= Parameters::GetInstance()->GetVdWScalingFactorSCF(); |
439 | 443 | value *= (atomA.GetXyz()[axisA] - atomB.GetXyz()[axisA])/distance; |
@@ -461,24 +465,25 @@ double Cndo2::GetDiatomVdWCorrection2ndDerivative(int indexAtomA, | ||
461 | 465 | double damping1stDerivative = this->GetVdwDampingValue1stDerivative(vdWDistance, distance); |
462 | 466 | double damping2ndDerivative = this->GetVdwDampingValue2ndDerivative(vdWDistance, distance); |
463 | 467 | |
464 | - double temp1 = -6.0*pow(distance,-7.0)*damping | |
465 | - + pow(distance,-6.0)*damping1stDerivative; | |
466 | - double temp2 = 42.0*pow(distance,-8.0)*damping | |
467 | - -12.0*pow(distance,-7.0)*damping1stDerivative | |
468 | - + pow(distance,-6.0)*damping2ndDerivative; | |
468 | + double dis6 = distance*distance*distance*distance*distance*distance; | |
469 | + double tmp1 = -6.0*damping /(dis6*distance) | |
470 | + + damping1stDerivative/dis6; | |
471 | + double tmp2 = 42.0*damping /(dis6*distance*distance) | |
472 | + -12.0*damping1stDerivative/(dis6*distance) | |
473 | + + damping2ndDerivative/dis6; | |
469 | 474 | |
470 | 475 | double pre1=0.0; |
471 | 476 | double pre2=0.0; |
472 | 477 | if(axisA1 != axisA2){ |
473 | - pre1 = -dCartesian1*dCartesian2/pow(distance,3.0); | |
474 | - pre2 = dCartesian1*dCartesian2/pow(distance,2.0); | |
478 | + pre1 = -dCartesian1*dCartesian2/(distance*distance*distance); | |
479 | + pre2 = dCartesian1*dCartesian2/(distance*distance); | |
475 | 480 | } |
476 | 481 | else{ |
477 | - pre1 = 1.0/distance - dCartesian1*dCartesian1/pow(distance,3.0); | |
478 | - pre2 = pow(dCartesian1/distance,2.0); | |
482 | + pre1 = 1.0/distance - dCartesian1*dCartesian1/(distance*distance*distance); | |
483 | + pre2 = (dCartesian1*dCartesian1)/(distance*distance); | |
479 | 484 | } |
480 | 485 | |
481 | - double value= pre1*temp1 + pre2*temp2; | |
486 | + double value= pre1*tmp1 + pre2*tmp2; | |
482 | 487 | value *= -1.0*vdWScalingFacotor*vdWCoefficients; |
483 | 488 | return value; |
484 | 489 | } |
@@ -1330,7 +1335,8 @@ bool Cndo2::SatisfyConvergenceCriterion(double const* const * oldOrbitalElectron | ||
1330 | 1335 | for(int i=0; i<numberAOs; i++){ |
1331 | 1336 | try{ |
1332 | 1337 | for(int j=0; j<numberAOs; j++){ |
1333 | - change += pow(oldOrbitalElectronPopulation[i][j] - orbitalElectronPopulation[i][j], 2.0); | |
1338 | + change += (oldOrbitalElectronPopulation[i][j] - orbitalElectronPopulation[i][j]) | |
1339 | + *(oldOrbitalElectronPopulation[i][j] - orbitalElectronPopulation[i][j]); | |
1334 | 1340 | } |
1335 | 1341 | } |
1336 | 1342 | catch(MolDSException ex){ |
@@ -1949,9 +1955,10 @@ void Cndo2::CalcCartesianMatrixElementsByGTOExpansion(double& xComponent, | ||
1949 | 1955 | double gaussianExponentA = 0.0; |
1950 | 1956 | double gaussianExponentB = 0.0; |
1951 | 1957 | double overlapSASB = 0.0; |
1952 | - double rAB = sqrt( pow(atomA.GetXyz()[XAxis]-atomB.GetXyz()[XAxis], 2.0) | |
1953 | - +pow(atomA.GetXyz()[YAxis]-atomB.GetXyz()[YAxis], 2.0) | |
1954 | - +pow(atomA.GetXyz()[ZAxis]-atomB.GetXyz()[ZAxis], 2.0) ); | |
1958 | + double dX = atomA.GetXyz()[XAxis] - atomB.GetXyz()[XAxis]; | |
1959 | + double dY = atomA.GetXyz()[YAxis] - atomB.GetXyz()[YAxis]; | |
1960 | + double dZ = atomA.GetXyz()[ZAxis] - atomB.GetXyz()[ZAxis]; | |
1961 | + double rAB = sqrt(dX*dX + dY*dY + dZ*dZ); | |
1955 | 1962 | double temp = 0.0; |
1956 | 1963 | double tempX = 0.0; |
1957 | 1964 | double tempY = 0.0; |
@@ -1966,12 +1973,12 @@ void Cndo2::CalcCartesianMatrixElementsByGTOExpansion(double& xComponent, | ||
1966 | 1973 | shellTypeB, |
1967 | 1974 | valenceOrbitalB, |
1968 | 1975 | j); |
1969 | - gaussianExponentA = pow(orbitalExponentA, 2.0) * | |
1976 | + gaussianExponentA = (orbitalExponentA*orbitalExponentA) * | |
1970 | 1977 | GTOExpansionSTO::GetInstance()->GetExponent(stonG, |
1971 | 1978 | shellTypeA, |
1972 | 1979 | valenceOrbitalA, |
1973 | 1980 | i); |
1974 | - gaussianExponentB = pow(orbitalExponentB, 2.0) * | |
1981 | + gaussianExponentB = (orbitalExponentB*orbitalExponentB) * | |
1975 | 1982 | GTOExpansionSTO::GetInstance()->GetExponent(stonG, |
1976 | 1983 | shellTypeB, |
1977 | 1984 | valenceOrbitalB, |
@@ -2162,8 +2169,8 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2162 | 2169 | double temp2 = gaussianExponentA*xyzA[axis] - gaussianExponentA*xyzB[axis]; |
2163 | 2170 | double temp3 = gaussianExponentB*xyzA[axis] - gaussianExponentB*xyzB[axis]; |
2164 | 2171 | value = 0.5*(temp1+temp2-temp3); |
2165 | - value -= temp1*temp2*temp3*pow(beta,-1.0); | |
2166 | - value *= 4.0*sqrt(gaussianExponentA*gaussianExponentB)*pow(beta,-2.0); | |
2172 | + value -= temp1*temp2*temp3/beta; | |
2173 | + value *= 4.0*sqrt(gaussianExponentA*gaussianExponentB)/(beta*beta); | |
2167 | 2174 | value *= overlapSASB; |
2168 | 2175 | return value; |
2169 | 2176 | } |
@@ -2185,9 +2192,9 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2185 | 2192 | } |
2186 | 2193 | double temp1 = gaussianExponentA*xyzA[piDirection] - gaussianExponentA*xyzB[piDirection]; |
2187 | 2194 | double temp2 = gaussianExponentB*xyzA[piDirection] - gaussianExponentB*xyzB[piDirection]; |
2188 | - value = 0.5 - temp1*temp2*pow(beta,-1.0); | |
2195 | + value = 0.5 - temp1*temp2/beta; | |
2189 | 2196 | value *= gaussianExponentA*xyzA[axis] + gaussianExponentB*xyzB[axis]; |
2190 | - value *= 4.0*sqrt(gaussianExponentA*gaussianExponentB)*pow(beta,-2.0); | |
2197 | + value *= 4.0*sqrt(gaussianExponentA*gaussianExponentB)/(beta*beta); | |
2191 | 2198 | value *= overlapSASB; |
2192 | 2199 | return value; |
2193 | 2200 | } |
@@ -2209,9 +2216,9 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2209 | 2216 | } |
2210 | 2217 | double temp1 = gaussianExponentA*xyzA[axis] + gaussianExponentB*xyzB[axis]; |
2211 | 2218 | double temp2 = gaussianExponentA*xyzA[axis] - gaussianExponentA*xyzB[axis]; |
2212 | - value = 0.5 + temp1*temp2*pow(beta,-1.0); | |
2219 | + value = 0.5 + temp1*temp2/beta; | |
2213 | 2220 | value *= gaussianExponentB*xyzA[piDirectionA] - gaussianExponentB*xyzB[piDirectionA]; |
2214 | - value *= -4.0*sqrt(gaussianExponentA*gaussianExponentB)*pow(beta,-2.0); | |
2221 | + value *= -4.0*sqrt(gaussianExponentA*gaussianExponentB)/(beta*beta); | |
2215 | 2222 | value *= overlapSASB; |
2216 | 2223 | return value; |
2217 | 2224 | } |
@@ -2233,9 +2240,9 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2233 | 2240 | } |
2234 | 2241 | double temp1 = gaussianExponentA*xyzA[axis] + gaussianExponentB*xyzB[axis]; |
2235 | 2242 | double temp2 = gaussianExponentB*xyzA[axis] - gaussianExponentB*xyzB[axis]; |
2236 | - value = 0.5 - temp1*temp2*pow(beta,-1.0); | |
2243 | + value = 0.5 - temp1*temp2/beta; | |
2237 | 2244 | value *= gaussianExponentA*xyzA[piDirectionB] - gaussianExponentA*xyzB[piDirectionB]; |
2238 | - value *= 4.0*sqrt(gaussianExponentA*gaussianExponentB)*pow(beta,-2.0); | |
2245 | + value *= 4.0*sqrt(gaussianExponentA*gaussianExponentB)/(beta*beta); | |
2239 | 2246 | value *= overlapSASB; |
2240 | 2247 | return value; |
2241 | 2248 | } |
@@ -2268,7 +2275,7 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2268 | 2275 | double temp1 = gaussianExponentB*xyzA[piDirectionA] - gaussianExponentB*xyzB[piDirectionA]; |
2269 | 2276 | double temp2 = gaussianExponentA*xyzA[axis] + gaussianExponentB*xyzB[axis]; |
2270 | 2277 | double temp3 = gaussianExponentA*xyzA[piDirectionB] - gaussianExponentA*xyzB[piDirectionB]; |
2271 | - value = -4.0*sqrt(gaussianExponentA*gaussianExponentB)*pow(beta,-3.0); | |
2278 | + value = -4.0*sqrt(gaussianExponentA*gaussianExponentB)/(beta*beta*beta); | |
2272 | 2279 | value *= temp1*temp2*temp3; |
2273 | 2280 | value *= overlapSASB; |
2274 | 2281 | return value; |
@@ -2317,8 +2324,10 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2317 | 2324 | overlapSASB); |
2318 | 2325 | value = 0.5*gaussianExponentA*dxyz[axis] |
2319 | 2326 | -gaussianExponentB*dxyz[axis] |
2320 | - +pow(gaussianExponentB,2.0)*gaussianExponentA*pow(dxyz[axis],3.0)/beta; | |
2321 | - value *= 8.0*pow(gaussianExponentA, 1.5)*gaussianExponentB*pow(beta,-3.0)*dxyz[anotherAxis]*overlapSASB; | |
2327 | + +(gaussianExponentB*gaussianExponentB)*gaussianExponentA | |
2328 | + *dxyz[axis]*dxyz[axis]*dxyz[axis]/beta; | |
2329 | + value *= 8.0*gaussianExponentA*sqrt(gaussianExponentA) | |
2330 | + *gaussianExponentB*dxyz[anotherAxis]*overlapSASB/(beta*beta*beta); | |
2322 | 2331 | value += xyzA[axis]*overlapAOs1; |
2323 | 2332 | return value; |
2324 | 2333 | } |
@@ -2366,8 +2375,10 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2366 | 2375 | overlapSASB); |
2367 | 2376 | value = 0.5*gaussianExponentB*dxyz[axis] |
2368 | 2377 | -gaussianExponentA*dxyz[axis] |
2369 | - +pow(gaussianExponentA,2.0)*gaussianExponentB*pow(dxyz[axis],3.0)/beta; | |
2370 | - value *= 8.0*pow(gaussianExponentB, 1.5)*gaussianExponentA*pow(beta,-3.0)*dxyz[anotherAxis]*overlapSASB; | |
2378 | + +(gaussianExponentA*gaussianExponentA)*gaussianExponentB | |
2379 | + *dxyz[axis]*dxyz[axis]*dxyz[axis]/beta; | |
2380 | + value *= 8.0*gaussianExponentB*sqrt(gaussianExponentB)*gaussianExponentA | |
2381 | + *dxyz[anotherAxis]*overlapSASB/(beta*beta*beta); | |
2371 | 2382 | value += xyzB[axis]*overlapAOs1; |
2372 | 2383 | return value; |
2373 | 2384 | } |
@@ -2400,8 +2411,9 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2400 | 2411 | dxyz[ZAxis], |
2401 | 2412 | rAB, |
2402 | 2413 | overlapSASB); |
2403 | - value = 0.5+pow(gaussianExponentB*dxyz[axis], 2.0)/beta; | |
2404 | - value *= 8.0*pow(gaussianExponentA, 2.5)*gaussianExponentB*pow(beta, -3.0)*overlapSASB; | |
2414 | + value = 0.5+gaussianExponentB*gaussianExponentB*dxyz[axis]*dxyz[axis]/beta; | |
2415 | + value *= 8.0*gaussianExponentA*gaussianExponentA*sqrt(gaussianExponentA) | |
2416 | + *gaussianExponentB*overlapSASB/(beta*beta*beta); | |
2405 | 2417 | value *= dxyz[anotherAxis1]*dxyz[anotherAxis2]; |
2406 | 2418 | value += xyzA[axis]*overlapAOs1; |
2407 | 2419 | return value; |
@@ -2434,8 +2446,9 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2434 | 2446 | dxyz[ZAxis], |
2435 | 2447 | rAB, |
2436 | 2448 | overlapSASB); |
2437 | - value = 0.5+pow(gaussianExponentA*dxyz[axis], 2.0)/beta; | |
2438 | - value *= 8.0*pow(gaussianExponentB, 2.5)*gaussianExponentA*pow(beta, -3.0)*overlapSASB; | |
2449 | + value = 0.5+gaussianExponentA*gaussianExponentA*dxyz[axis]*dxyz[axis]/beta; | |
2450 | + value *= 8.0*gaussianExponentB*gaussianExponentB*sqrt(gaussianExponentB) | |
2451 | + *gaussianExponentA*overlapSASB/(beta*beta*beta); | |
2439 | 2452 | value *= dxyz[anotherAxis1]*dxyz[anotherAxis2]; |
2440 | 2453 | value += xyzB[axis]*overlapAOs1; |
2441 | 2454 | return value; |
@@ -2588,11 +2601,12 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2588 | 2601 | dxyz[ZAxis], |
2589 | 2602 | rAB, |
2590 | 2603 | overlapSASB); |
2591 | - value = 0.5-2.0*gaussianExponentA*gaussianExponentB*pow(dxyz[XAxis],2.0)/beta; | |
2592 | - value += 0.5*pow(gaussianExponentA,2.0)*(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0))/beta; | |
2593 | - value += pow(gaussianExponentA*gaussianExponentB*dxyz[XAxis]/beta,2.0) | |
2594 | - *(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0)); | |
2595 | - value *= 4.0*pow(gaussianExponentA,0.5)*gaussianExponentB*pow(beta,-2.0); | |
2604 | + value = 0.5-2.0*gaussianExponentA*gaussianExponentB*(dxyz[XAxis]*dxyz[XAxis])/beta; | |
2605 | + value += 0.5*(gaussianExponentA*gaussianExponentA)*((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/beta; | |
2606 | + value += (gaussianExponentA*gaussianExponentB*dxyz[XAxis] | |
2607 | + *gaussianExponentA*gaussianExponentB*dxyz[XAxis]) | |
2608 | + *((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/(beta*beta); | |
2609 | + value *= 4.0*sqrt(gaussianExponentA)*gaussianExponentB/(beta*beta); | |
2596 | 2610 | value *= overlapSASB; |
2597 | 2611 | value += xyzA[axis]*overlapAOs1; |
2598 | 2612 | return value; |
@@ -2609,11 +2623,12 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2609 | 2623 | dxyz[ZAxis], |
2610 | 2624 | rAB, |
2611 | 2625 | overlapSASB); |
2612 | - value = 0.5-2.0*gaussianExponentA*gaussianExponentB*pow(dxyz[XAxis],2.0)/beta; | |
2613 | - value += 0.5*pow(gaussianExponentB,2.0)*(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0))/beta; | |
2614 | - value += pow(gaussianExponentA*gaussianExponentB*dxyz[XAxis]/beta,2.0) | |
2615 | - *(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0)); | |
2616 | - value *= 4.0*pow(gaussianExponentB,0.5)*gaussianExponentA*pow(beta,-2.0); | |
2626 | + value = 0.5-2.0*gaussianExponentA*gaussianExponentB*(dxyz[XAxis]*dxyz[XAxis])/beta; | |
2627 | + value += 0.5*(gaussianExponentB*gaussianExponentB)*((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/beta; | |
2628 | + value += (gaussianExponentA*gaussianExponentB*dxyz[XAxis] | |
2629 | + *gaussianExponentA*gaussianExponentB*dxyz[XAxis]) | |
2630 | + *((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/(beta*beta); | |
2631 | + value *= 4.0*sqrt(gaussianExponentB)*gaussianExponentA/(beta*beta); | |
2617 | 2632 | value *= overlapSASB; |
2618 | 2633 | value += xyzB[axis]*overlapAOs1; |
2619 | 2634 | return value; |
@@ -2630,11 +2645,12 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2630 | 2645 | dxyz[ZAxis], |
2631 | 2646 | rAB, |
2632 | 2647 | overlapSASB); |
2633 | - value = 0.5-2.0*gaussianExponentA*gaussianExponentB*pow(dxyz[YAxis],2.0)/beta; | |
2634 | - value += 0.5*pow(gaussianExponentA,2.0)*(pow(dxyz[YAxis],2.0)-pow(dxyz[XAxis],2.0))/beta; | |
2635 | - value += pow(gaussianExponentA*gaussianExponentB*dxyz[YAxis]/beta,2.0) | |
2636 | - *(pow(dxyz[YAxis],2.0)-pow(dxyz[XAxis],2.0)); | |
2637 | - value *= -4.0*pow(gaussianExponentA,0.5)*gaussianExponentB*pow(beta,-2.0); | |
2648 | + value = 0.5-2.0*gaussianExponentA*gaussianExponentB*(dxyz[YAxis]*dxyz[YAxis])/beta; | |
2649 | + value += 0.5*(gaussianExponentA*gaussianExponentA)*((dxyz[YAxis]*dxyz[YAxis])-(dxyz[XAxis]*dxyz[XAxis]))/beta; | |
2650 | + value += (gaussianExponentA*gaussianExponentB*dxyz[YAxis] | |
2651 | + *gaussianExponentA*gaussianExponentB*dxyz[YAxis]) | |
2652 | + *((dxyz[YAxis]*dxyz[YAxis])-(dxyz[XAxis]*dxyz[XAxis]))/(beta*beta); | |
2653 | + value *= -4.0*sqrt(gaussianExponentA)*gaussianExponentB/(beta*beta); | |
2638 | 2654 | value *= overlapSASB; |
2639 | 2655 | value += xyzA[axis]*overlapAOs1; |
2640 | 2656 | return value; |
@@ -2651,11 +2667,12 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2651 | 2667 | dxyz[ZAxis], |
2652 | 2668 | rAB, |
2653 | 2669 | overlapSASB); |
2654 | - value = 0.5-2.0*gaussianExponentA*gaussianExponentB*pow(dxyz[YAxis],2.0)/beta; | |
2655 | - value += 0.5*pow(gaussianExponentB,2.0)*(pow(dxyz[YAxis],2.0)-pow(dxyz[XAxis],2.0))/beta; | |
2656 | - value += pow(gaussianExponentA*gaussianExponentB*dxyz[YAxis]/beta,2.0) | |
2657 | - *(pow(dxyz[YAxis],2.0)-pow(dxyz[XAxis],2.0)); | |
2658 | - value *= -4.0*pow(gaussianExponentB,0.5)*gaussianExponentA*pow(beta,-2.0); | |
2670 | + value = 0.5-2.0*gaussianExponentA*gaussianExponentB*(dxyz[YAxis]*dxyz[YAxis])/beta; | |
2671 | + value += 0.5*(gaussianExponentB*gaussianExponentB)*((dxyz[YAxis]*dxyz[YAxis])-(dxyz[XAxis]*dxyz[XAxis]))/beta; | |
2672 | + value += (gaussianExponentA*gaussianExponentB*dxyz[YAxis] | |
2673 | + *gaussianExponentA*gaussianExponentB*dxyz[YAxis]) | |
2674 | + *((dxyz[YAxis]*dxyz[YAxis])-(dxyz[XAxis]*dxyz[XAxis]))/(beta*beta); | |
2675 | + value *= -4.0*sqrt(gaussianExponentB)*gaussianExponentA/(beta*beta); | |
2659 | 2676 | value *= overlapSASB; |
2660 | 2677 | value += xyzB[axis]*overlapAOs1; |
2661 | 2678 | return value; |
@@ -2672,11 +2689,12 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2672 | 2689 | dxyz[ZAxis], |
2673 | 2690 | rAB, |
2674 | 2691 | overlapSASB); |
2675 | - value = 0.5*(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0)); | |
2676 | - value += pow(gaussianExponentB*dxyz[ZAxis],2.0) | |
2677 | - *(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0)) | |
2692 | + value = 0.5*((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis])); | |
2693 | + value += gaussianExponentB*gaussianExponentB*dxyz[ZAxis]*dxyz[ZAxis] | |
2694 | + *((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis])) | |
2678 | 2695 | /beta; |
2679 | - value *= 4.0*pow(gaussianExponentA,2.5)*gaussianExponentB*pow(beta,-3.0); | |
2696 | + value *= 4.0*gaussianExponentA*gaussianExponentA*sqrt(gaussianExponentA) | |
2697 | + *gaussianExponentB/(beta*beta*beta); | |
2680 | 2698 | value *= overlapSASB; |
2681 | 2699 | value += xyzA[axis]*overlapAOs1; |
2682 | 2700 | return value; |
@@ -2693,11 +2711,11 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2693 | 2711 | dxyz[ZAxis], |
2694 | 2712 | rAB, |
2695 | 2713 | overlapSASB); |
2696 | - value = 0.5*(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0)); | |
2714 | + value = 0.5*((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis])); | |
2697 | 2715 | value += pow(gaussianExponentA*dxyz[ZAxis],2.0) |
2698 | - *(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0)) | |
2716 | + *((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis])) | |
2699 | 2717 | /beta; |
2700 | - value *= 4.0*pow(gaussianExponentB,2.5)*gaussianExponentA*pow(beta,-3.0); | |
2718 | + value *= 4.0*pow(gaussianExponentB,2.5)*gaussianExponentA/(beta*beta*beta); | |
2701 | 2719 | value *= overlapSASB; |
2702 | 2720 | value += xyzA[axis]*overlapAOs1; |
2703 | 2721 | return value; |
@@ -2716,12 +2734,12 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2716 | 2734 | rAB, |
2717 | 2735 | overlapSASB); |
2718 | 2736 | value = -0.5 |
2719 | - +2.0*gaussianExponentA*gaussianExponentB*pow(dxyz[axis],2.0)/beta | |
2720 | - +0.5*pow(gaussianExponentA,2.0) | |
2721 | - *(2.0*pow(dxyz[ZAxis],2.0)-pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0))/beta | |
2737 | + +2.0*gaussianExponentA*gaussianExponentB*(dxyz[axis]*dxyz[axis])/beta | |
2738 | + +0.5*(gaussianExponentA*gaussianExponentA) | |
2739 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis])-(dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/beta | |
2722 | 2740 | +pow(gaussianExponentA*gaussianExponentB*dxyz[axis]/beta,2.0) |
2723 | - *(2.0*pow(dxyz[ZAxis],2.0)-pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0)); | |
2724 | - value *= 4.0*pow(gaussianExponentA,0.5)*gaussianExponentB*pow(beta,-2.0)/sqrt(3.0); | |
2741 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis])-(dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis])); | |
2742 | + value *= 4.0*sqrt(gaussianExponentA)*gaussianExponentB/(beta*beta*sqrt(3.0)); | |
2725 | 2743 | value *= overlapSASB; |
2726 | 2744 | value += xyzA[axis]*overlapAOs1; |
2727 | 2745 | return value; |
@@ -2740,12 +2758,12 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2740 | 2758 | rAB, |
2741 | 2759 | overlapSASB); |
2742 | 2760 | value = -0.5 |
2743 | - +2.0*gaussianExponentA*gaussianExponentB*pow(dxyz[axis],2.0)/beta | |
2744 | - +0.5*pow(gaussianExponentB,2.0) | |
2745 | - *(2.0*pow(dxyz[ZAxis],2.0)-pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0))/beta | |
2761 | + +2.0*gaussianExponentA*gaussianExponentB*(dxyz[axis]*dxyz[axis])/beta | |
2762 | + +0.5*(gaussianExponentB*gaussianExponentB) | |
2763 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis])-(dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/beta | |
2746 | 2764 | +pow(gaussianExponentA*gaussianExponentB*dxyz[axis]/beta,2.0) |
2747 | - *(2.0*pow(dxyz[ZAxis],2.0)-pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0)); | |
2748 | - value *= 4.0*pow(gaussianExponentB,0.5)*gaussianExponentA*pow(beta,-2.0)/sqrt(3.0); | |
2765 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis])-(dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis])); | |
2766 | + value *= 4.0*sqrt(gaussianExponentB)*gaussianExponentA/(beta*beta*sqrt(3.0)); | |
2749 | 2767 | value *= overlapSASB; |
2750 | 2768 | value += xyzB[axis]*overlapAOs1; |
2751 | 2769 | return value; |
@@ -2763,12 +2781,12 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2763 | 2781 | rAB, |
2764 | 2782 | overlapSASB); |
2765 | 2783 | value = 1.0 |
2766 | - -4.0*gaussianExponentA*gaussianExponentB*pow(dxyz[axis],2.0)/beta | |
2767 | - +0.5*pow(gaussianExponentA,2.0) | |
2768 | - *(2.0*pow(dxyz[ZAxis],2.0)-pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0))/beta | |
2784 | + -4.0*gaussianExponentA*gaussianExponentB*(dxyz[axis]*dxyz[axis])/beta | |
2785 | + +0.5*(gaussianExponentA*gaussianExponentA) | |
2786 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis])-(dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/beta | |
2769 | 2787 | +pow(gaussianExponentA*gaussianExponentB*dxyz[axis]/beta,2.0) |
2770 | - *(2.0*pow(dxyz[ZAxis],2.0)-pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0)); | |
2771 | - value *= 4.0*pow(gaussianExponentA,0.5)*gaussianExponentB*pow(beta,-2.0)/sqrt(3.0); | |
2788 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis])-(dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis])); | |
2789 | + value *= 4.0*sqrt(gaussianExponentA)*gaussianExponentB/(beta*beta*sqrt(3.0)); | |
2772 | 2790 | value *= overlapSASB; |
2773 | 2791 | value += xyzA[axis]*overlapAOs1; |
2774 | 2792 | return value; |
@@ -2786,12 +2804,12 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2786 | 2804 | rAB, |
2787 | 2805 | overlapSASB); |
2788 | 2806 | value = 1.0 |
2789 | - -4.0*gaussianExponentA*gaussianExponentB*pow(dxyz[axis],2.0)/beta | |
2790 | - +0.5*pow(gaussianExponentB,2.0) | |
2791 | - *(2.0*pow(dxyz[ZAxis],2.0)-pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0))/beta | |
2807 | + -4.0*gaussianExponentA*gaussianExponentB*(dxyz[axis]*dxyz[axis])/beta | |
2808 | + +0.5*(gaussianExponentB*gaussianExponentB) | |
2809 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis])-(dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/beta | |
2792 | 2810 | +pow(gaussianExponentA*gaussianExponentB*dxyz[axis]/beta,2.0) |
2793 | - *(2.0*pow(dxyz[ZAxis],2.0)-pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0)); | |
2794 | - value *= 4.0*pow(gaussianExponentB,0.5)*gaussianExponentA*pow(beta,-2.0)/sqrt(3.0); | |
2811 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis])-(dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis])); | |
2812 | + value *= 4.0*sqrt(gaussianExponentB)*gaussianExponentA/(beta*beta*sqrt(3.0)); | |
2795 | 2813 | value *= overlapSASB; |
2796 | 2814 | value += xyzB[axis]*overlapAOs1; |
2797 | 2815 | return value; |
@@ -2842,7 +2860,7 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2842 | 2860 | value = 0.5*(gaussianExponentA-gaussianExponentB)*dxyz[axis] |
2843 | 2861 | +(gaussianExponentA-gaussianExponentB)*(gaussianExponentA*gaussianExponentB) |
2844 | 2862 | *dxyz[axis]*pow(dxyz[anotherAxis],2.0)/beta; |
2845 | - value *= 8.0*(gaussianExponentA*gaussianExponentB)*pow(beta,-3.0); | |
2863 | + value *= 8.0*(gaussianExponentA*gaussianExponentB)/(beta*beta*beta); | |
2846 | 2864 | value *= overlapSASB; |
2847 | 2865 | value += axisAverage*overlapAOs1; |
2848 | 2866 | return value; |
@@ -2889,8 +2907,8 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2889 | 2907 | overlapSASB); |
2890 | 2908 | value = (gaussianExponentA-gaussianExponentB)*dxyz[axis] |
2891 | 2909 | -(gaussianExponentA-gaussianExponentB)*(gaussianExponentA*gaussianExponentB) |
2892 | - *(pow(dxyz[axis],2.0) - pow(dxyz[anotherAxis],2.0))*dxyz[axis]/beta; | |
2893 | - value *= 4.0*(gaussianExponentA*gaussianExponentB)*pow(beta,-3.0); | |
2910 | + *((dxyz[axis]*dxyz[axis]) - pow(dxyz[anotherAxis],2.0))*dxyz[axis]/beta; | |
2911 | + value *= 4.0*(gaussianExponentA*gaussianExponentB)/(beta*beta*beta); | |
2894 | 2912 | value *= overlapSASB; |
2895 | 2913 | value += axisAverage*overlapAOs1; |
2896 | 2914 | return value; |
@@ -2911,7 +2929,7 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2911 | 2929 | overlapSASB); |
2912 | 2930 | value = (gaussianExponentA-gaussianExponentB)*dxyz[axis] |
2913 | 2931 | -(gaussianExponentA-gaussianExponentB)*(gaussianExponentA*gaussianExponentB) |
2914 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0))*dxyz[axis]/beta; | |
2932 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]))*dxyz[axis]/beta; | |
2915 | 2933 | value *= 4.0*(gaussianExponentA*gaussianExponentB)*pow(beta,-3.0)/3.0; |
2916 | 2934 | value *= overlapSASB; |
2917 | 2935 | value += axisAverage*overlapAOs1; |
@@ -2932,7 +2950,7 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
2932 | 2950 | overlapSASB); |
2933 | 2951 | value = 2.0*(gaussianExponentA-gaussianExponentB)*dxyz[axis] |
2934 | 2952 | -(gaussianExponentA-gaussianExponentB)*(gaussianExponentA*gaussianExponentB) |
2935 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0))*dxyz[axis]/beta; | |
2953 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]))*dxyz[axis]/beta; | |
2936 | 2954 | value *= 8.0*(gaussianExponentA*gaussianExponentB)*pow(beta,-3.0)/3.0; |
2937 | 2955 | value *= overlapSASB; |
2938 | 2956 | value += axisAverage*overlapAOs1; |
@@ -3007,7 +3025,7 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3007 | 3025 | rAB, |
3008 | 3026 | overlapSASB); |
3009 | 3027 | value = 0.5-gaussianExponentA*gaussianExponentB*pow(dxyz[anotherAxis1],2.0)/beta; |
3010 | - value *= 8.0*pow(gaussianExponentA,2.0)*gaussianExponentB*pow(beta,-3.0)*dxyz[anotherAxis2]; | |
3028 | + value *= 8.0*(gaussianExponentA*gaussianExponentA)*gaussianExponentB*pow(beta,-3.0)*dxyz[anotherAxis2]; | |
3011 | 3029 | value *= overlapSASB; |
3012 | 3030 | value += axisAverage*overlapAOs1; |
3013 | 3031 | return value; |
@@ -3058,7 +3076,7 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3058 | 3076 | rAB, |
3059 | 3077 | overlapSASB); |
3060 | 3078 | value = 0.5-gaussianExponentA*gaussianExponentB*pow(dxyz[anotherAxis1],2.0)/beta; |
3061 | - value *= -8.0*pow(gaussianExponentB,2.0)*gaussianExponentA*pow(beta,-3.0)*dxyz[anotherAxis2]; | |
3079 | + value *= -8.0*(gaussianExponentB*gaussianExponentB)*gaussianExponentA*pow(beta,-3.0)*dxyz[anotherAxis2]; | |
3062 | 3080 | value *= overlapSASB; |
3063 | 3081 | value += axisAverage*overlapAOs1; |
3064 | 3082 | return value; |
@@ -3077,9 +3095,9 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3077 | 3095 | rAB, |
3078 | 3096 | overlapSASB); |
3079 | 3097 | value = 0.5*beta |
3080 | - -pow(gaussianExponentA,2.0)*gaussianExponentB*pow(dxyz[XAxis],2.0)/beta | |
3081 | - +pow(gaussianExponentB,2.0)*gaussianExponentA | |
3082 | - *(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0))/(2.0*beta); | |
3098 | + -(gaussianExponentA*gaussianExponentA)*gaussianExponentB*(dxyz[XAxis]*dxyz[XAxis])/beta | |
3099 | + +(gaussianExponentB*gaussianExponentB)*gaussianExponentA | |
3100 | + *((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/(2.0*beta); | |
3083 | 3101 | value *= 8.0*gaussianExponentA*gaussianExponentB*pow(beta,-3.0)*dxyz[YAxis]; |
3084 | 3102 | value *= overlapSASB; |
3085 | 3103 | value += axisAverage*overlapAOs1; |
@@ -3099,9 +3117,9 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3099 | 3117 | rAB, |
3100 | 3118 | overlapSASB); |
3101 | 3119 | value = 0.5*beta |
3102 | - -pow(gaussianExponentB,2.0)*gaussianExponentA*pow(dxyz[XAxis],2.0)/beta | |
3103 | - +pow(gaussianExponentA,2.0)*gaussianExponentB | |
3104 | - *(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0))/(2.0*beta); | |
3120 | + -(gaussianExponentB*gaussianExponentB)*gaussianExponentA*(dxyz[XAxis]*dxyz[XAxis])/beta | |
3121 | + +(gaussianExponentA*gaussianExponentA)*gaussianExponentB | |
3122 | + *((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/(2.0*beta); | |
3105 | 3123 | value *= -8.0*gaussianExponentA*gaussianExponentB*pow(beta,-3.0)*dxyz[YAxis]; |
3106 | 3124 | value *= overlapSASB; |
3107 | 3125 | value += axisAverage*overlapAOs1; |
@@ -3121,9 +3139,9 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3121 | 3139 | rAB, |
3122 | 3140 | overlapSASB); |
3123 | 3141 | value = -0.5*beta |
3124 | - +pow(gaussianExponentA,2.0)*gaussianExponentB*pow(dxyz[YAxis],2.0)/beta | |
3125 | - +pow(gaussianExponentB,2.0)*gaussianExponentA | |
3126 | - *(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0))/(2.0*beta); | |
3142 | + +(gaussianExponentA*gaussianExponentA)*gaussianExponentB*(dxyz[YAxis]*dxyz[YAxis])/beta | |
3143 | + +(gaussianExponentB*gaussianExponentB)*gaussianExponentA | |
3144 | + *((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/(2.0*beta); | |
3127 | 3145 | value *= 8.0*gaussianExponentA*gaussianExponentB*pow(beta,-3.0)*dxyz[XAxis]; |
3128 | 3146 | value *= overlapSASB; |
3129 | 3147 | value += axisAverage*overlapAOs1; |
@@ -3143,9 +3161,9 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3143 | 3161 | rAB, |
3144 | 3162 | overlapSASB); |
3145 | 3163 | value = -0.5*beta |
3146 | - +pow(gaussianExponentB,2.0)*gaussianExponentA*pow(dxyz[YAxis],2.0)/beta | |
3147 | - +pow(gaussianExponentA,2.0)*gaussianExponentB | |
3148 | - *(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0))/(2.0*beta); | |
3164 | + +(gaussianExponentB*gaussianExponentB)*gaussianExponentA*(dxyz[YAxis]*dxyz[YAxis])/beta | |
3165 | + +(gaussianExponentA*gaussianExponentA)*gaussianExponentB | |
3166 | + *((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/(2.0*beta); | |
3149 | 3167 | value *= -8.0*gaussianExponentA*gaussianExponentB*pow(beta,-3.0)*dxyz[XAxis]; |
3150 | 3168 | value *= overlapSASB; |
3151 | 3169 | value += axisAverage*overlapAOs1; |
@@ -3167,7 +3185,7 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3167 | 3185 | overlapSASB); |
3168 | 3186 | value = 8.0*pow(gaussianExponentA,4.0)*pow(gaussianExponentB,3.0) |
3169 | 3187 | *dxyz[XAxis]*dxyz[YAxis]*dxyz[ZAxis] |
3170 | - *(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0))/pow(beta,5.0); | |
3188 | + *((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/pow(beta,5.0); | |
3171 | 3189 | value *= overlapSASB; |
3172 | 3190 | value += xyzB[axis]*overlapAOs1; |
3173 | 3191 | return value; |
@@ -3188,7 +3206,7 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3188 | 3206 | overlapSASB); |
3189 | 3207 | value = -8.0*pow(gaussianExponentA,3.0)*pow(gaussianExponentB,4.0) |
3190 | 3208 | *dxyz[XAxis]*dxyz[YAxis]*dxyz[ZAxis] |
3191 | - *(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0))/pow(beta,5.0); | |
3209 | + *((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/pow(beta,5.0); | |
3192 | 3210 | value *= overlapSASB; |
3193 | 3211 | value += xyzA[axis]*overlapAOs1; |
3194 | 3212 | return value; |
@@ -3207,10 +3225,10 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3207 | 3225 | rAB, |
3208 | 3226 | overlapSASB); |
3209 | 3227 | value = -0.5*gaussianExponentA |
3210 | - +pow(gaussianExponentA,2.0)*gaussianExponentB*pow(dxyz[YAxis],2.0)/beta | |
3211 | - +pow(gaussianExponentB,2.0)*gaussianExponentA | |
3212 | - *(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0))/(2.0*beta); | |
3213 | - value *= 8.0*gaussianExponentA*gaussianExponentB*dxyz[ZAxis]*pow(beta,-3.0); | |
3228 | + +(gaussianExponentA*gaussianExponentA)*gaussianExponentB*(dxyz[YAxis]*dxyz[YAxis])/beta | |
3229 | + +(gaussianExponentB*gaussianExponentB)*gaussianExponentA | |
3230 | + *((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/(2.0*beta); | |
3231 | + value *= 8.0*gaussianExponentA*gaussianExponentB*dxyz[ZAxis]/(beta*beta*beta); | |
3214 | 3232 | value *= overlapSASB; |
3215 | 3233 | value += axisAverage*overlapAOs1; |
3216 | 3234 | return value; |
@@ -3229,10 +3247,10 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3229 | 3247 | rAB, |
3230 | 3248 | overlapSASB); |
3231 | 3249 | value = -0.5*gaussianExponentB |
3232 | - +pow(gaussianExponentB,2.0)*gaussianExponentA*pow(dxyz[YAxis],2.0)/beta | |
3233 | - +pow(gaussianExponentA,2.0)*gaussianExponentB | |
3234 | - *(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0))/(2.0*beta); | |
3235 | - value *= -8.0*gaussianExponentA*gaussianExponentB*dxyz[ZAxis]*pow(beta,-3.0); | |
3250 | + +(gaussianExponentB*gaussianExponentB)*gaussianExponentA*(dxyz[YAxis]*dxyz[YAxis])/beta | |
3251 | + +(gaussianExponentA*gaussianExponentA)*gaussianExponentB | |
3252 | + *((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/(2.0*beta); | |
3253 | + value *= -8.0*gaussianExponentA*gaussianExponentB*dxyz[ZAxis]/(beta*beta*beta); | |
3236 | 3254 | value *= overlapSASB; |
3237 | 3255 | value += axisAverage*overlapAOs1; |
3238 | 3256 | return value; |
@@ -3251,10 +3269,10 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3251 | 3269 | rAB, |
3252 | 3270 | overlapSASB); |
3253 | 3271 | value = -0.5*gaussianExponentA |
3254 | - +pow(gaussianExponentA,2.0)*gaussianExponentB*pow(dxyz[XAxis],2.0)/beta | |
3255 | - +pow(gaussianExponentB,2.0)*gaussianExponentA | |
3256 | - *(pow(dxyz[YAxis],2.0)-pow(dxyz[XAxis],2.0))/(2.0*beta); | |
3257 | - value *= -8.0*gaussianExponentA*gaussianExponentB*dxyz[ZAxis]*pow(beta,-3.0); | |
3272 | + +(gaussianExponentA*gaussianExponentA)*gaussianExponentB*(dxyz[XAxis]*dxyz[XAxis])/beta | |
3273 | + +(gaussianExponentB*gaussianExponentB)*gaussianExponentA | |
3274 | + *((dxyz[YAxis]*dxyz[YAxis])-(dxyz[XAxis]*dxyz[XAxis]))/(2.0*beta); | |
3275 | + value *= -8.0*gaussianExponentA*gaussianExponentB*dxyz[ZAxis]/(beta*beta*beta); | |
3258 | 3276 | value *= overlapSASB; |
3259 | 3277 | value += axisAverage*overlapAOs1; |
3260 | 3278 | return value; |
@@ -3273,10 +3291,10 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3273 | 3291 | rAB, |
3274 | 3292 | overlapSASB); |
3275 | 3293 | value = -0.5*gaussianExponentB |
3276 | - +pow(gaussianExponentB,2.0)*gaussianExponentA*pow(dxyz[YAxis],2.0)/beta | |
3277 | - +pow(gaussianExponentA,2.0)*gaussianExponentB | |
3278 | - *(pow(dxyz[YAxis],2.0)-pow(dxyz[XAxis],2.0))/(2.0*beta); | |
3279 | - value *= 8.0*gaussianExponentA*gaussianExponentB*dxyz[ZAxis]*pow(beta,-3.0); | |
3294 | + +(gaussianExponentB*gaussianExponentB)*gaussianExponentA*(dxyz[YAxis]*dxyz[YAxis])/beta | |
3295 | + +(gaussianExponentA*gaussianExponentA)*gaussianExponentB | |
3296 | + *((dxyz[YAxis]*dxyz[YAxis])-(dxyz[XAxis]*dxyz[XAxis]))/(2.0*beta); | |
3297 | + value *= 8.0*gaussianExponentA*gaussianExponentB*dxyz[ZAxis]/(beta*beta*beta); | |
3280 | 3298 | value *= overlapSASB; |
3281 | 3299 | value += axisAverage*overlapAOs1; |
3282 | 3300 | return value; |
@@ -3294,8 +3312,8 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3294 | 3312 | dxyz[ZAxis], |
3295 | 3313 | rAB, |
3296 | 3314 | overlapSASB); |
3297 | - value = gaussianExponentA*gaussianExponentB*(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0))/beta+1.0; | |
3298 | - value *= 4.0*gaussianExponentA*pow(gaussianExponentB,2.0)*dxyz[YAxis]*pow(beta,-3.0); | |
3315 | + value = gaussianExponentA*gaussianExponentB*((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/beta+1.0; | |
3316 | + value *= 4.0*gaussianExponentA*(gaussianExponentB*gaussianExponentB)*dxyz[YAxis]/(beta*beta*beta); | |
3299 | 3317 | value *= overlapSASB; |
3300 | 3318 | value += axisAverage*overlapAOs1; |
3301 | 3319 | return value; |
@@ -3313,8 +3331,8 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3313 | 3331 | dxyz[ZAxis], |
3314 | 3332 | rAB, |
3315 | 3333 | overlapSASB); |
3316 | - value = gaussianExponentA*gaussianExponentB*(pow(dxyz[XAxis],2.0)-pow(dxyz[YAxis],2.0))/beta+1.0; | |
3317 | - value *= -4.0*gaussianExponentB*pow(gaussianExponentA,2.0)*dxyz[YAxis]*pow(beta,-3.0); | |
3334 | + value = gaussianExponentA*gaussianExponentB*((dxyz[XAxis]*dxyz[XAxis])-(dxyz[YAxis]*dxyz[YAxis]))/beta+1.0; | |
3335 | + value *= -4.0*gaussianExponentB*(gaussianExponentA*gaussianExponentA)*dxyz[YAxis]/(beta*beta*beta); | |
3318 | 3336 | value *= overlapSASB; |
3319 | 3337 | value += axisAverage*overlapAOs1; |
3320 | 3338 | return value; |
@@ -3332,8 +3350,8 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3332 | 3350 | dxyz[ZAxis], |
3333 | 3351 | rAB, |
3334 | 3352 | overlapSASB); |
3335 | - value = gaussianExponentA*gaussianExponentB*(pow(dxyz[YAxis],2.0)-pow(dxyz[XAxis],2.0))/beta+1.0; | |
3336 | - value *= -4.0*gaussianExponentA*pow(gaussianExponentB,2.0)*dxyz[XAxis]*pow(beta,-3.0); | |
3353 | + value = gaussianExponentA*gaussianExponentB*((dxyz[YAxis]*dxyz[YAxis])-(dxyz[XAxis]*dxyz[XAxis]))/beta+1.0; | |
3354 | + value *= -4.0*gaussianExponentA*(gaussianExponentB*gaussianExponentB)*dxyz[XAxis]/(beta*beta*beta); | |
3337 | 3355 | value *= overlapSASB; |
3338 | 3356 | value += axisAverage*overlapAOs1; |
3339 | 3357 | return value; |
@@ -3351,8 +3369,8 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3351 | 3369 | dxyz[ZAxis], |
3352 | 3370 | rAB, |
3353 | 3371 | overlapSASB); |
3354 | - value = gaussianExponentA*gaussianExponentB*(pow(dxyz[YAxis],2.0)-pow(dxyz[XAxis],2.0))/beta+1.0; | |
3355 | - value *= 4.0*gaussianExponentB*pow(gaussianExponentA,2.0)*dxyz[XAxis]*pow(beta,-3.0); | |
3372 | + value = gaussianExponentA*gaussianExponentB*((dxyz[YAxis]*dxyz[YAxis])-(dxyz[XAxis]*dxyz[XAxis]))/beta+1.0; | |
3373 | + value *= 4.0*gaussianExponentB*(gaussianExponentA*gaussianExponentA)*dxyz[XAxis]/(beta*beta*beta); | |
3356 | 3374 | value *= overlapSASB; |
3357 | 3375 | value += axisAverage*overlapAOs1; |
3358 | 3376 | return value; |
@@ -3371,7 +3389,7 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3371 | 3389 | dxyz[ZAxis], |
3372 | 3390 | rAB, |
3373 | 3391 | overlapSASB); |
3374 | - value = 2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0); | |
3392 | + value = 2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]); | |
3375 | 3393 | value *= dxyz[XAxis]*dxyz[YAxis]*dxyz[ZAxis]; |
3376 | 3394 | value *= 8.0*pow(gaussianExponentA,4.0)*pow(gaussianExponentB,3.0); |
3377 | 3395 | value /= sqrt(3.0)*pow(beta,5.0); |
@@ -3393,7 +3411,7 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3393 | 3411 | dxyz[ZAxis], |
3394 | 3412 | rAB, |
3395 | 3413 | overlapSASB); |
3396 | - value = 2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0); | |
3414 | + value = 2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]); | |
3397 | 3415 | value *= dxyz[XAxis]*dxyz[YAxis]*dxyz[ZAxis]; |
3398 | 3416 | value *= -8.0*pow(gaussianExponentB,4.0)*pow(gaussianExponentA,3.0); |
3399 | 3417 | value /= sqrt(3.0)*pow(beta,5.0); |
@@ -3422,12 +3440,14 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3422 | 3440 | rAB, |
3423 | 3441 | overlapSASB); |
3424 | 3442 | value = 0.5*(gaussianExponentB-gaussianExponentA) |
3425 | - +3.0*pow(gaussianExponentA,2.0)*gaussianExponentB*pow(dxyz[axis],2.0)*pow(beta,-2.0) | |
3426 | - +gaussianExponentA*pow(gaussianExponentB,2.0) | |
3427 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0))/(2.0*beta) | |
3428 | - +pow(gaussianExponentA,3.0)*pow(gaussianExponentB,2.0)*pow(dxyz[axis],2.0) | |
3429 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0))*pow(beta,-2.0); | |
3430 | - value *= 8.0*gaussianExponentA*gaussianExponentB*dxyz[anotherAxis]/(sqrt(3.0)*pow(beta,3.0)); | |
3443 | + +3.0*(gaussianExponentA*gaussianExponentA)*gaussianExponentB | |
3444 | + *(dxyz[axis]*dxyz[axis])/(beta*beta) | |
3445 | + +gaussianExponentA*(gaussianExponentB*gaussianExponentB) | |
3446 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]))/(2.0*beta) | |
3447 | + +pow(gaussianExponentA,3.0)*(gaussianExponentB*gaussianExponentB)*(dxyz[axis]*dxyz[axis]) | |
3448 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis])) | |
3449 | + /(beta*beta); | |
3450 | + value *= 8.0*gaussianExponentA*gaussianExponentB*dxyz[anotherAxis]/(sqrt(3.0)*beta*beta*beta); | |
3431 | 3451 | value *= overlapSASB; |
3432 | 3452 | value += xyzB[axis]*overlapAOs1; |
3433 | 3453 | return value; |
@@ -3453,12 +3473,13 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3453 | 3473 | rAB, |
3454 | 3474 | overlapSASB); |
3455 | 3475 | value = 0.5*(gaussianExponentA-gaussianExponentB) |
3456 | - +3.0*pow(gaussianExponentB,2.0)*gaussianExponentA*pow(dxyz[axis],2.0)*pow(beta,-2.0) | |
3457 | - +gaussianExponentB*pow(gaussianExponentA,2.0) | |
3458 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0))/(2.0*beta) | |
3459 | - +pow(gaussianExponentB,3.0)*pow(gaussianExponentA,2.0)*pow(dxyz[axis],2.0) | |
3460 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0))*pow(beta,-2.0); | |
3461 | - value *= -8.0*gaussianExponentA*gaussianExponentB*dxyz[anotherAxis]/(sqrt(3.0)*pow(beta,3.0)); | |
3476 | + +3.0*(gaussianExponentB*gaussianExponentB)*gaussianExponentA | |
3477 | + *(dxyz[axis]*dxyz[axis])/(beta*beta) | |
3478 | + +gaussianExponentB*(gaussianExponentA*gaussianExponentA) | |
3479 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]))/(2.0*beta) | |
3480 | + +pow(gaussianExponentB,3.0)*(gaussianExponentA*gaussianExponentA)*(dxyz[axis]*dxyz[axis]) | |
3481 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]))/(beta*beta); | |
3482 | + value *= -8.0*gaussianExponentA*gaussianExponentB*dxyz[anotherAxis]/(sqrt(3.0)*(beta*beta*beta)); | |
3462 | 3483 | value *= overlapSASB; |
3463 | 3484 | value += xyzA[axis]*overlapAOs1; |
3464 | 3485 | return value; |
@@ -3477,13 +3498,13 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3477 | 3498 | rAB, |
3478 | 3499 | overlapSASB); |
3479 | 3500 | value = gaussianExponentB-0.5*gaussianExponentA |
3480 | - +gaussianExponentA*pow(gaussianExponentB,2.0) | |
3481 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0))/(2.0*beta) | |
3501 | + +gaussianExponentA*(gaussianExponentB*gaussianExponentB) | |
3502 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]))/(2.0*beta) | |
3482 | 3503 | +pow(gaussianExponentA,3.0)*pow(gaussianExponentB*dxyz[axis],2.0) |
3483 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0)) | |
3484 | - *pow(beta,-2.0); | |
3504 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis])) | |
3505 | + /(beta*beta); | |
3485 | 3506 | value *= 8.0*gaussianExponentA*gaussianExponentB*dxyz[ZAxis] |
3486 | - /(sqrt(3.0)*pow(beta,3.0)); | |
3507 | + /(sqrt(3.0)*(beta*beta*beta)); | |
3487 | 3508 | value *= overlapSASB; |
3488 | 3509 | value += xyzB[axis]*overlapAOs1; |
3489 | 3510 | return value; |
@@ -3502,13 +3523,13 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3502 | 3523 | rAB, |
3503 | 3524 | overlapSASB); |
3504 | 3525 | value = gaussianExponentA-0.5*gaussianExponentB |
3505 | - +gaussianExponentB*pow(gaussianExponentA,2.0) | |
3506 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0))/(2.0*beta) | |
3507 | - +pow(gaussianExponentB,3.0)*pow(gaussianExponentA*dxyz[axis],2.0) | |
3508 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0)) | |
3509 | - *pow(beta,-2.0); | |
3526 | + +gaussianExponentB*(gaussianExponentA*gaussianExponentA) | |
3527 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]))/(2.0*beta) | |
3528 | + +pow(gaussianExponentB,3.0)*(gaussianExponentA*gaussianExponentA*dxyz[axis]*dxyz[axis]) | |
3529 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis])) | |
3530 | + /(beta*beta); | |
3510 | 3531 | value *= -8.0*gaussianExponentA*gaussianExponentB*dxyz[ZAxis] |
3511 | - /(sqrt(3.0)*pow(beta,3.0)); | |
3532 | + /(sqrt(3.0)*(beta*beta*beta)); | |
3512 | 3533 | value *= overlapSASB; |
3513 | 3534 | value += xyzA[axis]*overlapAOs1; |
3514 | 3535 | return value; |
@@ -3534,14 +3555,14 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3534 | 3555 | rAB, |
3535 | 3556 | overlapSASB); |
3536 | 3557 | value = gaussianExponentA-0.5*gaussianExponentB |
3537 | - -3.0*pow(gaussianExponentA,2.0)*gaussianExponentB*pow(dxyz[axis]/beta,2.0) | |
3538 | - +gaussianExponentA*pow(gaussianExponentB,2.0) | |
3539 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0))/(2.0*beta) | |
3558 | + -3.0*(gaussianExponentA*gaussianExponentA)*gaussianExponentB*pow(dxyz[axis]/beta,2.0) | |
3559 | + +gaussianExponentA*(gaussianExponentB*gaussianExponentB) | |
3560 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]))/(2.0*beta) | |
3540 | 3561 | +pow(gaussianExponentA,3.0)*pow(gaussianExponentB*dxyz[axis],2.0) |
3541 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0)) | |
3542 | - *pow(beta,-2.0); | |
3562 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis])) | |
3563 | + /(beta*beta); | |
3543 | 3564 | value *= 8.0*gaussianExponentA*gaussianExponentB*dxyz[anotherAxis] |
3544 | - /(sqrt(3.0)*pow(beta,3.0)); | |
3565 | + /(sqrt(3.0)*(beta*beta*beta)); | |
3545 | 3566 | value *= overlapSASB; |
3546 | 3567 | value += xyzB[axis]*overlapAOs1; |
3547 | 3568 | return value; |
@@ -3567,14 +3588,15 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3567 | 3588 | rAB, |
3568 | 3589 | overlapSASB); |
3569 | 3590 | value = gaussianExponentB-0.5*gaussianExponentA |
3570 | - -3.0*pow(gaussianExponentB,2.0)*gaussianExponentA*pow(dxyz[axis]/beta,2.0) | |
3571 | - +gaussianExponentB*pow(gaussianExponentA,2.0) | |
3572 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0))/(2.0*beta) | |
3573 | - +pow(gaussianExponentB,3.0)*pow(gaussianExponentA*dxyz[axis],2.0) | |
3574 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0)) | |
3575 | - *pow(beta,-2.0); | |
3591 | + -3.0*(gaussianExponentB*gaussianExponentB)*gaussianExponentA*dxyz[axis]*dxyz[axis]/(beta*beta) | |
3592 | + +gaussianExponentB*(gaussianExponentA*gaussianExponentA) | |
3593 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]))/(2.0*beta) | |
3594 | + +pow(gaussianExponentB,3.0) | |
3595 | + *(gaussianExponentA*gaussianExponentA*dxyz[axis]*dxyz[axis]) | |
3596 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis])) | |
3597 | + /(beta*beta); | |
3576 | 3598 | value *= -8.0*gaussianExponentA*gaussianExponentB*dxyz[anotherAxis] |
3577 | - /(sqrt(3.0)*pow(beta,3.0)); | |
3599 | + /(sqrt(3.0)*(beta*beta*beta)); | |
3578 | 3600 | value *= overlapSASB; |
3579 | 3601 | value += xyzA[axis]*overlapAOs1; |
3580 | 3602 | return value; |
@@ -3593,11 +3615,11 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3593 | 3615 | rAB, |
3594 | 3616 | overlapSASB); |
3595 | 3617 | value = gaussianExponentB - gaussianExponentA |
3596 | - +gaussianExponentA*pow(gaussianExponentB,2.0) | |
3597 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0))/beta | |
3598 | - +pow(gaussianExponentA,2.0)*gaussianExponentB | |
3599 | - *(pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0))/beta; | |
3600 | - value *= 4.0*gaussianExponentA*gaussianExponentB*dxyz[XAxis]*pow(beta,-3.0)/sqrt(3.0); | |
3618 | + +gaussianExponentA*(gaussianExponentB*gaussianExponentB) | |
3619 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]))/beta | |
3620 | + +(gaussianExponentA*gaussianExponentA)*gaussianExponentB | |
3621 | + *((dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]))/beta; | |
3622 | + value *= 4.0*gaussianExponentA*gaussianExponentB*dxyz[XAxis]/(beta*beta*beta*sqrt(3.0)); | |
3601 | 3623 | value *= overlapSASB; |
3602 | 3624 | value += axisAverage*overlapAOs1; |
3603 | 3625 | return value; |
@@ -3616,11 +3638,11 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3616 | 3638 | rAB, |
3617 | 3639 | overlapSASB); |
3618 | 3640 | value = gaussianExponentA - gaussianExponentB |
3619 | - +gaussianExponentB*pow(gaussianExponentA,2.0) | |
3620 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0))/beta | |
3621 | - +pow(gaussianExponentB,2.0)*gaussianExponentA | |
3622 | - *(pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0))/beta; | |
3623 | - value *= -4.0*gaussianExponentA*gaussianExponentB*dxyz[XAxis]*pow(beta,-3.0)/sqrt(3.0); | |
3641 | + +gaussianExponentB*(gaussianExponentA*gaussianExponentA) | |
3642 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]))/beta | |
3643 | + +(gaussianExponentB*gaussianExponentB)*gaussianExponentA | |
3644 | + *((dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]))/beta; | |
3645 | + value *= -4.0*gaussianExponentA*gaussianExponentB*dxyz[XAxis]/(beta*beta*beta*sqrt(3.0)); | |
3624 | 3646 | value *= overlapSASB; |
3625 | 3647 | value += axisAverage*overlapAOs1; |
3626 | 3648 | return value; |
@@ -3639,11 +3661,11 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3639 | 3661 | rAB, |
3640 | 3662 | overlapSASB); |
3641 | 3663 | value = gaussianExponentB - gaussianExponentA |
3642 | - +gaussianExponentA*pow(gaussianExponentB,2.0) | |
3643 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0))/beta | |
3644 | - +pow(gaussianExponentA,2.0)*gaussianExponentB | |
3645 | - *(pow(dxyz[YAxis],2.0) - pow(dxyz[XAxis],2.0))/beta; | |
3646 | - value *= -4.0*gaussianExponentA*gaussianExponentB*dxyz[YAxis]*pow(beta,-3.0)/sqrt(3.0); | |
3664 | + +gaussianExponentA*(gaussianExponentB*gaussianExponentB) | |
3665 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]))/beta | |
3666 | + +(gaussianExponentA*gaussianExponentA)*gaussianExponentB | |
3667 | + *((dxyz[YAxis]*dxyz[YAxis]) - (dxyz[XAxis]*dxyz[XAxis]))/beta; | |
3668 | + value *= -4.0*gaussianExponentA*gaussianExponentB*dxyz[YAxis]/(beta*beta*beta*sqrt(3.0)); | |
3647 | 3669 | value *= overlapSASB; |
3648 | 3670 | value += axisAverage*overlapAOs1; |
3649 | 3671 | return value; |
@@ -3662,11 +3684,11 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3662 | 3684 | rAB, |
3663 | 3685 | overlapSASB); |
3664 | 3686 | value = gaussianExponentA - gaussianExponentB |
3665 | - +gaussianExponentB*pow(gaussianExponentA,2.0) | |
3666 | - *(2.0*pow(dxyz[ZAxis],2.0) - pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0))/beta | |
3667 | - +pow(gaussianExponentB,2.0)*gaussianExponentA | |
3668 | - *(pow(dxyz[YAxis],2.0) - pow(dxyz[XAxis],2.0))/beta; | |
3669 | - value *= 4.0*gaussianExponentA*gaussianExponentB*dxyz[YAxis]*pow(beta,-3.0)/sqrt(3.0); | |
3687 | + +gaussianExponentB*(gaussianExponentA*gaussianExponentA) | |
3688 | + *(2.0*(dxyz[ZAxis]*dxyz[ZAxis]) - (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]))/beta | |
3689 | + +(gaussianExponentB*gaussianExponentB)*gaussianExponentA | |
3690 | + *((dxyz[YAxis]*dxyz[YAxis]) - (dxyz[XAxis]*dxyz[XAxis]))/beta; | |
3691 | + value *= 4.0*gaussianExponentA*gaussianExponentB*dxyz[YAxis]/(beta*beta*beta*sqrt(3.0)); | |
3670 | 3692 | value *= overlapSASB; |
3671 | 3693 | value += axisAverage*overlapAOs1; |
3672 | 3694 | return value; |
@@ -3684,9 +3706,9 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3684 | 3706 | dxyz[ZAxis], |
3685 | 3707 | rAB, |
3686 | 3708 | overlapSASB); |
3687 | - value = pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0); | |
3688 | - value *= -8.0*pow(gaussianExponentA,3.0)*pow(gaussianExponentB,2.0)*dxyz[ZAxis]; | |
3689 | - value /= sqrt(3.0)*pow(beta,4.0); | |
3709 | + value = (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]); | |
3710 | + value *= -8.0*pow(gaussianExponentA,3.0)*(gaussianExponentB*gaussianExponentB)*dxyz[ZAxis]; | |
3711 | + value /= sqrt(3.0)*beta*beta*beta*beta; | |
3690 | 3712 | value *= overlapSASB; |
3691 | 3713 | value += axisAverage*overlapAOs1; |
3692 | 3714 | return value; |
@@ -3704,9 +3726,9 @@ double Cndo2::GetGaussianCartesianMatrix(AtomType atomTypeA, | ||
3704 | 3726 | dxyz[ZAxis], |
3705 | 3727 | rAB, |
3706 | 3728 | overlapSASB); |
3707 | - value = pow(dxyz[XAxis],2.0) - pow(dxyz[YAxis],2.0); | |
3708 | - value *= 8.0*pow(gaussianExponentA,2.0)*pow(gaussianExponentB,3.0)*dxyz[ZAxis]; | |
3709 | - value /= sqrt(3.0)*pow(beta,4.0); | |
3729 | + value = (dxyz[XAxis]*dxyz[XAxis]) - (dxyz[YAxis]*dxyz[YAxis]); | |
3730 | + value *= 8.0*(gaussianExponentA*gaussianExponentA)*pow(gaussianExponentB,3.0)*dxyz[ZAxis]; | |
3731 | + value /= sqrt(3.0)*beta*beta*beta*beta; | |
3710 | 3732 | value *= overlapSASB; |
3711 | 3733 | value += axisAverage*overlapAOs1; |
3712 | 3734 | return value; |
@@ -4001,9 +4023,7 @@ void Cndo2::CalcDiatomicOverlapAOs1stDerivatives(double*** diatomicOverlapAOs1st | ||
4001 | 4023 | double cartesian[CartesianType_end] = {atomA.GetXyz()[XAxis] - atomB.GetXyz()[XAxis], |
4002 | 4024 | atomA.GetXyz()[YAxis] - atomB.GetXyz()[YAxis], |
4003 | 4025 | atomA.GetXyz()[ZAxis] - atomB.GetXyz()[ZAxis]}; |
4004 | - double R = sqrt( pow(cartesian[XAxis],2.0) + | |
4005 | - pow(cartesian[YAxis],2.0) + | |
4006 | - pow(cartesian[ZAxis],2.0) ); | |
4026 | + double R = this->molecule->GetDistanceAtoms(atomA, atomB); | |
4007 | 4027 | |
4008 | 4028 | this->CalcDiatomicOverlapAOsInDiatomicFrame(tmpDiaOverlapAOsInDiaFrame, atomA, atomB); |
4009 | 4029 | this->CalcDiatomicOverlapAOs1stDerivativeInDiatomicFrame(tmpDiaOverlapAOs1stDerivInDiaFrame, atomA, atomB); |
@@ -4133,9 +4153,7 @@ void Cndo2::CalcDiatomicOverlapAOs2ndDerivatives(double**** diatomicOverlapAOs2n | ||
4133 | 4153 | double cartesian[CartesianType_end] = {atomA.GetXyz()[XAxis] - atomB.GetXyz()[XAxis], |
4134 | 4154 | atomA.GetXyz()[YAxis] - atomB.GetXyz()[YAxis], |
4135 | 4155 | atomA.GetXyz()[ZAxis] - atomB.GetXyz()[ZAxis]}; |
4136 | - double R = sqrt( pow(cartesian[XAxis],2.0) + | |
4137 | - pow(cartesian[YAxis],2.0) + | |
4138 | - pow(cartesian[ZAxis],2.0) ); | |
4156 | + double R = this->molecule->GetDistanceAtoms(atomA, atomB); | |
4139 | 4157 | |
4140 | 4158 | this->CalcDiatomicOverlapAOsInDiatomicFrame(tmpDiaOverlapAOsInDiaFrame, atomA, atomB); |
4141 | 4159 | this->CalcDiatomicOverlapAOs1stDerivativeInDiatomicFrame(tmpDiaOverlapAOs1stDerivInDiaFrame, atomA, atomB); |
@@ -4266,13 +4284,13 @@ double Cndo2::Get2ndDerivativeElementFromDistanceDerivatives(double firstDistanc | ||
4266 | 4284 | double rAB) const{ |
4267 | 4285 | double value=0.0; |
4268 | 4286 | if(axisA1 != axisA2){ |
4269 | - value = -1.0*pow(rAB, -3.0)*firstDistanceDeri; | |
4270 | - value += pow(rAB, -2.0)*secondDistanceDeri; | |
4287 | + value = -1.0*firstDistanceDeri/(rAB*rAB*rAB); | |
4288 | + value += secondDistanceDeri/(rAB*rAB); | |
4271 | 4289 | value *= cartesian[axisA1]*cartesian[axisA2]; |
4272 | 4290 | } |
4273 | 4291 | else{ |
4274 | - value = (pow(rAB,2.0) - pow(cartesian[axisA1],2.0))*pow(rAB, -3.0)*firstDistanceDeri; | |
4275 | - value += pow(cartesian[axisA1]/rAB, 2.0)*secondDistanceDeri; | |
4292 | + value = (rAB*rAB - cartesian[axisA1]*cartesian[axisA1])*firstDistanceDeri/(rAB*rAB*rAB); | |
4293 | + value += cartesian[axisA1]*cartesian[axisA1]*secondDistanceDeri/(rAB*rAB); | |
4276 | 4294 | } |
4277 | 4295 | return value; |
4278 | 4296 | } |
@@ -4341,7 +4359,7 @@ double Cndo2::GetOverlapAOsElementByGTOExpansion(const Atom& atomA, int valenceI | ||
4341 | 4359 | double dx = atomA.GetXyz()[XAxis] - atomB.GetXyz()[XAxis]; |
4342 | 4360 | double dy = atomA.GetXyz()[YAxis] - atomB.GetXyz()[YAxis]; |
4343 | 4361 | double dz = atomA.GetXyz()[ZAxis] - atomB.GetXyz()[ZAxis]; |
4344 | - double rAB = sqrt( pow(dx, 2.0) + pow(dy, 2.0) + pow(dz,2.0) ); | |
4362 | + double rAB = sqrt( dx*dx + dy*dy + dz*dz ); | |
4345 | 4363 | ShellType shellTypeA = atomA.GetValenceShellType(); |
4346 | 4364 | ShellType shellTypeB = atomB.GetValenceShellType(); |
4347 | 4365 | OrbitalType valenceOrbitalA = atomA.GetValence(valenceIndexA); |
@@ -4366,12 +4384,12 @@ double Cndo2::GetOverlapAOsElementByGTOExpansion(const Atom& atomA, int valenceI | ||
4366 | 4384 | shellTypeB, |
4367 | 4385 | valenceOrbitalB, |
4368 | 4386 | j); |
4369 | - gaussianExponentA = pow(orbitalExponentA, 2.0) * | |
4387 | + gaussianExponentA = (orbitalExponentA*orbitalExponentA) * | |
4370 | 4388 | GTOExpansionSTO::GetInstance()->GetExponent(stonG, |
4371 | 4389 | shellTypeA, |
4372 | 4390 | valenceOrbitalA, |
4373 | 4391 | i); |
4374 | - gaussianExponentB = pow(orbitalExponentB, 2.0) * | |
4392 | + gaussianExponentB = (orbitalExponentB*orbitalExponentB) * | |
4375 | 4393 | GTOExpansionSTO::GetInstance()->GetExponent(stonG, |
4376 | 4394 | shellTypeB, |
4377 | 4395 | valenceOrbitalB, |
@@ -4397,7 +4415,7 @@ double Cndo2::GetGaussianOverlapAOsSASB(double gaussianExponentA, | ||
4397 | 4415 | double value; |
4398 | 4416 | double temp1 = 0.0; |
4399 | 4417 | double temp2 = 0.0; |
4400 | - temp1 = 2.0*pow(gaussianExponentA*gaussianExponentB, 0.5) | |
4418 | + temp1 = 2.0*sqrt(gaussianExponentA*gaussianExponentB) | |
4401 | 4419 | /(gaussianExponentA+gaussianExponentB); |
4402 | 4420 | temp2 = -1.0* gaussianExponentA*gaussianExponentB |
4403 | 4421 | /(gaussianExponentA+gaussianExponentB); |
@@ -4445,125 +4463,125 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4445 | 4463 | } |
4446 | 4464 | |
4447 | 4465 | else if(valenceOrbitalA == s && valenceOrbitalB == px){ |
4448 | - value = 2.0*gaussianExponentA*pow(gaussianExponentB, 0.5)*dx; | |
4466 | + value = 2.0*gaussianExponentA*sqrt(gaussianExponentB)*dx; | |
4449 | 4467 | value /= (gaussianExponentA+gaussianExponentB); |
4450 | 4468 | } |
4451 | 4469 | else if(valenceOrbitalA == s && valenceOrbitalB == py){ |
4452 | - value = 2.0*gaussianExponentA*pow(gaussianExponentB, 0.5)*dy; | |
4470 | + value = 2.0*gaussianExponentA*sqrt(gaussianExponentB)*dy; | |
4453 | 4471 | value /= (gaussianExponentA+gaussianExponentB); |
4454 | 4472 | } |
4455 | 4473 | else if(valenceOrbitalA == s && valenceOrbitalB == pz){ |
4456 | - value = 2.0*gaussianExponentA*pow(gaussianExponentB, 0.5)*dz; | |
4474 | + value = 2.0*gaussianExponentA*sqrt(gaussianExponentB)*dz; | |
4457 | 4475 | value /= (gaussianExponentA+gaussianExponentB); |
4458 | 4476 | } |
4459 | 4477 | |
4460 | 4478 | else if(valenceOrbitalA == px && valenceOrbitalB == s){ |
4461 | - value = -2.0*pow(gaussianExponentA, 0.5)*gaussianExponentB*dx; | |
4479 | + value = -2.0*sqrt(gaussianExponentA)*gaussianExponentB*dx; | |
4462 | 4480 | value /= (gaussianExponentA+gaussianExponentB); |
4463 | 4481 | } |
4464 | 4482 | else if(valenceOrbitalA == py && valenceOrbitalB == s){ |
4465 | - value = -2.0*pow(gaussianExponentA, 0.5)*gaussianExponentB*dy; | |
4483 | + value = -2.0*sqrt(gaussianExponentA)*gaussianExponentB*dy; | |
4466 | 4484 | value /= (gaussianExponentA+gaussianExponentB); |
4467 | 4485 | } |
4468 | 4486 | else if(valenceOrbitalA == pz && valenceOrbitalB == s){ |
4469 | - value = -2.0*pow(gaussianExponentA, 0.5)*gaussianExponentB*dz; | |
4487 | + value = -2.0*sqrt(gaussianExponentA)*gaussianExponentB*dz; | |
4470 | 4488 | value /= (gaussianExponentA+gaussianExponentB); |
4471 | 4489 | } |
4472 | 4490 | |
4473 | 4491 | else if(valenceOrbitalA == px && valenceOrbitalB == px){ |
4474 | 4492 | double temp = 0.0; |
4475 | - temp = -1.0*pow(dx,2.0)*gaussianExponentA*gaussianExponentB; | |
4493 | + temp = -1.0*(dx*dx)*gaussianExponentA*gaussianExponentB; | |
4476 | 4494 | temp /= (gaussianExponentA+gaussianExponentB); |
4477 | 4495 | temp += 0.5; |
4478 | - value = 4.0*pow(gaussianExponentA*gaussianExponentB, 0.5); | |
4496 | + value = 4.0*sqrt(gaussianExponentA*gaussianExponentB); | |
4479 | 4497 | value /= (gaussianExponentA+gaussianExponentB); |
4480 | 4498 | value *= temp; |
4481 | 4499 | } |
4482 | 4500 | else if(valenceOrbitalA == px && valenceOrbitalB == py){ |
4483 | - value = -4.0*pow(gaussianExponentA*gaussianExponentB, 1.5); | |
4484 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4501 | + value = -4.0*gaussianExponentA*gaussianExponentB*sqrt(gaussianExponentA*gaussianExponentB); | |
4502 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4485 | 4503 | value *= dx*dy; |
4486 | 4504 | } |
4487 | 4505 | else if(valenceOrbitalA == px && valenceOrbitalB == pz){ |
4488 | - value = -4.0*pow(gaussianExponentA*gaussianExponentB, 1.5); | |
4489 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4506 | + value = -4.0*gaussianExponentA*gaussianExponentB*sqrt(gaussianExponentA*gaussianExponentB); | |
4507 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4490 | 4508 | value *= dx*dz; |
4491 | 4509 | } |
4492 | 4510 | |
4493 | 4511 | else if(valenceOrbitalA == py && valenceOrbitalB == px){ |
4494 | - value = -4.0*pow(gaussianExponentA*gaussianExponentB, 1.5); | |
4495 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4512 | + value = -4.0*gaussianExponentA*gaussianExponentB*sqrt(gaussianExponentA*gaussianExponentB); | |
4513 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4496 | 4514 | value *= dy*dx; |
4497 | 4515 | } |
4498 | 4516 | else if(valenceOrbitalA == py && valenceOrbitalB == py){ |
4499 | 4517 | double temp = 0.0; |
4500 | - temp = -1.0*pow(dy,2.0)*gaussianExponentA*gaussianExponentB; | |
4518 | + temp = -1.0*(dy*dy)*gaussianExponentA*gaussianExponentB; | |
4501 | 4519 | temp /= (gaussianExponentA+gaussianExponentB); |
4502 | 4520 | temp += 0.5; |
4503 | - value = 4.0*pow(gaussianExponentA*gaussianExponentB, 0.5); | |
4521 | + value = 4.0*sqrt(gaussianExponentA*gaussianExponentB); | |
4504 | 4522 | value /= (gaussianExponentA+gaussianExponentB); |
4505 | 4523 | value *= temp; |
4506 | 4524 | } |
4507 | 4525 | else if(valenceOrbitalA == py && valenceOrbitalB == pz){ |
4508 | - value = -4.0*pow(gaussianExponentA*gaussianExponentB, 1.5); | |
4509 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4526 | + value = -4.0*gaussianExponentA*gaussianExponentB*sqrt(gaussianExponentA*gaussianExponentB); | |
4527 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4510 | 4528 | value *= dy*dz; |
4511 | 4529 | } |
4512 | 4530 | |
4513 | 4531 | else if(valenceOrbitalA == pz && valenceOrbitalB == px){ |
4514 | - value = -4.0*pow(gaussianExponentA*gaussianExponentB, 1.5); | |
4515 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4532 | + value = -4.0*gaussianExponentA*gaussianExponentB*sqrt(gaussianExponentA*gaussianExponentB); | |
4533 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4516 | 4534 | value *= dz*dx; |
4517 | 4535 | } |
4518 | 4536 | else if(valenceOrbitalA == pz && valenceOrbitalB == py){ |
4519 | - value = -4.0*pow(gaussianExponentA*gaussianExponentB, 1.5); | |
4520 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4537 | + value = -4.0*gaussianExponentA*gaussianExponentB*sqrt(gaussianExponentA*gaussianExponentB); | |
4538 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4521 | 4539 | value *= dz*dy; |
4522 | 4540 | } |
4523 | 4541 | else if(valenceOrbitalA == pz && valenceOrbitalB == pz){ |
4524 | 4542 | double temp = 0.0; |
4525 | - temp = -1.0*pow(dz,2.0)*gaussianExponentA*gaussianExponentB; | |
4543 | + temp = -1.0*(dz*dz)*gaussianExponentA*gaussianExponentB; | |
4526 | 4544 | temp /= (gaussianExponentA+gaussianExponentB); |
4527 | 4545 | temp += 0.5; |
4528 | - value = 4.0*pow(gaussianExponentA*gaussianExponentB, 0.5); | |
4546 | + value = 4.0*sqrt(gaussianExponentA*gaussianExponentB); | |
4529 | 4547 | value /= (gaussianExponentA+gaussianExponentB); |
4530 | 4548 | value *= temp; |
4531 | 4549 | } |
4532 | 4550 | |
4533 | 4551 | else if(valenceOrbitalA == dxy && valenceOrbitalB == s){ |
4534 | 4552 | value = 4.0*gaussianExponentA; |
4535 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4553 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4536 | 4554 | value *= gaussianExponentB*dx; |
4537 | 4555 | value *= gaussianExponentB*dy; |
4538 | 4556 | } |
4539 | 4557 | else if(valenceOrbitalA == dyz && valenceOrbitalB == s){ |
4540 | 4558 | value = 4.0*gaussianExponentA; |
4541 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4559 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4542 | 4560 | value *= gaussianExponentB*dy; |
4543 | 4561 | value *= gaussianExponentB*dz; |
4544 | 4562 | } |
4545 | 4563 | else if(valenceOrbitalA == dzx && valenceOrbitalB == s){ |
4546 | 4564 | value = 4.0*gaussianExponentA; |
4547 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4565 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4548 | 4566 | value *= gaussianExponentB*dz; |
4549 | 4567 | value *= gaussianExponentB*dx; |
4550 | 4568 | } |
4551 | 4569 | |
4552 | 4570 | else if(valenceOrbitalA == s && valenceOrbitalB == dxy){ |
4553 | 4571 | value = 4.0*gaussianExponentB; |
4554 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4572 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4555 | 4573 | value *= gaussianExponentA*dx; |
4556 | 4574 | value *= gaussianExponentA*dy; |
4557 | 4575 | } |
4558 | 4576 | else if(valenceOrbitalA == s && valenceOrbitalB == dyz){ |
4559 | 4577 | value = 4.0*gaussianExponentB; |
4560 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4578 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4561 | 4579 | value *= gaussianExponentA*dy; |
4562 | 4580 | value *= gaussianExponentA*dz; |
4563 | 4581 | } |
4564 | 4582 | else if(valenceOrbitalA == s && valenceOrbitalB == dzx){ |
4565 | 4583 | value = 4.0*gaussianExponentB; |
4566 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4584 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4567 | 4585 | value *= gaussianExponentA*dz; |
4568 | 4586 | value *= gaussianExponentA*dx; |
4569 | 4587 | } |
@@ -4573,7 +4591,7 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4573 | 4591 | double temp2 = gaussianExponentB*dx*gaussianExponentA*dx*gaussianExponentB*dy; |
4574 | 4592 | temp2 /= gaussianExponentA+gaussianExponentB; |
4575 | 4593 | value = temp1 + temp2; |
4576 | - value *= 8.0*gaussianExponentA*pow(gaussianExponentB, 0.5); | |
4594 | + value *= 8.0*gaussianExponentA*sqrt(gaussianExponentB); | |
4577 | 4595 | value /= pow(gaussianExponentA+gaussianExponentB, 2.0); |
4578 | 4596 | } |
4579 | 4597 | else if(valenceOrbitalA == dxy && valenceOrbitalB == py){ |
@@ -4581,7 +4599,7 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4581 | 4599 | double temp2 = gaussianExponentB*dy*gaussianExponentA*dy*gaussianExponentB*dx; |
4582 | 4600 | temp2 /= gaussianExponentA+gaussianExponentB; |
4583 | 4601 | value = temp1 + temp2; |
4584 | - value *= 8.0*gaussianExponentA*pow(gaussianExponentB, 0.5); | |
4602 | + value *= 8.0*gaussianExponentA*sqrt(gaussianExponentB); | |
4585 | 4603 | value /= pow(gaussianExponentA+gaussianExponentB, 2.0); |
4586 | 4604 | } |
4587 | 4605 | else if(valenceOrbitalA == dyz && valenceOrbitalB == py){ |
@@ -4589,7 +4607,7 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4589 | 4607 | double temp2 = gaussianExponentB*dy*gaussianExponentA*dy*gaussianExponentB*dz; |
4590 | 4608 | temp2 /= gaussianExponentA+gaussianExponentB; |
4591 | 4609 | value = temp1 + temp2; |
4592 | - value *= 8.0*gaussianExponentA*pow(gaussianExponentB, 0.5); | |
4610 | + value *= 8.0*gaussianExponentA*sqrt(gaussianExponentB); | |
4593 | 4611 | value /= pow(gaussianExponentA+gaussianExponentB, 2.0); |
4594 | 4612 | } |
4595 | 4613 | else if(valenceOrbitalA == dyz && valenceOrbitalB == pz){ |
@@ -4597,7 +4615,7 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4597 | 4615 | double temp2 = gaussianExponentB*dz*gaussianExponentA*dz*gaussianExponentB*dy; |
4598 | 4616 | temp2 /= gaussianExponentA+gaussianExponentB; |
4599 | 4617 | value = temp1 + temp2; |
4600 | - value *= 8.0*gaussianExponentA*pow(gaussianExponentB, 0.5); | |
4618 | + value *= 8.0*gaussianExponentA*sqrt(gaussianExponentB); | |
4601 | 4619 | value /= pow(gaussianExponentA+gaussianExponentB, 2.0); |
4602 | 4620 | } |
4603 | 4621 | else if(valenceOrbitalA == dzx && valenceOrbitalB == pz){ |
@@ -4605,7 +4623,7 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4605 | 4623 | double temp2 = gaussianExponentB*dz*gaussianExponentA*dz*gaussianExponentB*dx; |
4606 | 4624 | temp2 /= gaussianExponentA+gaussianExponentB; |
4607 | 4625 | value = temp1 + temp2; |
4608 | - value *= 8.0*gaussianExponentA*pow(gaussianExponentB, 0.5); | |
4626 | + value *= 8.0*gaussianExponentA*sqrt(gaussianExponentB); | |
4609 | 4627 | value /= pow(gaussianExponentA+gaussianExponentB, 2.0); |
4610 | 4628 | } |
4611 | 4629 | else if(valenceOrbitalA == dzx && valenceOrbitalB == px){ |
@@ -4613,7 +4631,7 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4613 | 4631 | double temp2 = gaussianExponentB*dx*gaussianExponentA*dx*gaussianExponentB*dz; |
4614 | 4632 | temp2 /= gaussianExponentA+gaussianExponentB; |
4615 | 4633 | value = temp1 + temp2; |
4616 | - value *= 8.0*gaussianExponentA*pow(gaussianExponentB, 0.5); | |
4634 | + value *= 8.0*gaussianExponentA*sqrt(gaussianExponentB); | |
4617 | 4635 | value /= pow(gaussianExponentA+gaussianExponentB, 2.0); |
4618 | 4636 | } |
4619 | 4637 |
@@ -4622,7 +4640,7 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4622 | 4640 | double temp2 = -1.0*gaussianExponentA*dx*gaussianExponentB*dx*gaussianExponentA*dy; |
4623 | 4641 | temp2 /= gaussianExponentA+gaussianExponentB; |
4624 | 4642 | value = temp1 + temp2; |
4625 | - value *= 8.0*gaussianExponentB*pow(gaussianExponentA, 0.5); | |
4643 | + value *= 8.0*gaussianExponentB*sqrt(gaussianExponentA); | |
4626 | 4644 | value /= pow(gaussianExponentA+gaussianExponentB, 2.0); |
4627 | 4645 | } |
4628 | 4646 | else if(valenceOrbitalA == py && valenceOrbitalB == dxy){ |
@@ -4630,7 +4648,7 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4630 | 4648 | double temp2 = -1.0*gaussianExponentA*dy*gaussianExponentB*dy*gaussianExponentA*dx; |
4631 | 4649 | temp2 /= gaussianExponentA+gaussianExponentB; |
4632 | 4650 | value = temp1 + temp2; |
4633 | - value *= 8.0*gaussianExponentB*pow(gaussianExponentA, 0.5); | |
4651 | + value *= 8.0*gaussianExponentB*sqrt(gaussianExponentA); | |
4634 | 4652 | value /= pow(gaussianExponentA+gaussianExponentB, 2.0); |
4635 | 4653 | } |
4636 | 4654 | else if(valenceOrbitalA == py && valenceOrbitalB == dyz){ |
@@ -4638,7 +4656,7 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4638 | 4656 | double temp2 = -1.0*gaussianExponentA*dy*gaussianExponentB*dy*gaussianExponentA*dz; |
4639 | 4657 | temp2 /= gaussianExponentA+gaussianExponentB; |
4640 | 4658 | value = temp1 + temp2; |
4641 | - value *= 8.0*gaussianExponentB*pow(gaussianExponentA, 0.5); | |
4659 | + value *= 8.0*gaussianExponentB*sqrt(gaussianExponentA); | |
4642 | 4660 | value /= pow(gaussianExponentA+gaussianExponentB, 2.0); |
4643 | 4661 | } |
4644 | 4662 | else if(valenceOrbitalA == pz && valenceOrbitalB == dyz){ |
@@ -4646,7 +4664,7 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4646 | 4664 | double temp2 = -1.0*gaussianExponentA*dz*gaussianExponentB*dz*gaussianExponentA*dy; |
4647 | 4665 | temp2 /= gaussianExponentA+gaussianExponentB; |
4648 | 4666 | value = temp1 + temp2; |
4649 | - value *= 8.0*gaussianExponentB*pow(gaussianExponentA, 0.5); | |
4667 | + value *= 8.0*gaussianExponentB*sqrt(gaussianExponentA); | |
4650 | 4668 | value /= pow(gaussianExponentA+gaussianExponentB, 2.0); |
4651 | 4669 | } |
4652 | 4670 | else if(valenceOrbitalA == pz && valenceOrbitalB == dzx){ |
@@ -4654,7 +4672,7 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4654 | 4672 | double temp2 = -1.0*gaussianExponentA*dz*gaussianExponentB*dz*gaussianExponentA*dx; |
4655 | 4673 | temp2 /= gaussianExponentA+gaussianExponentB; |
4656 | 4674 | value = temp1 + temp2; |
4657 | - value *= 8.0*gaussianExponentB*pow(gaussianExponentA, 0.5); | |
4675 | + value *= 8.0*gaussianExponentB*sqrt(gaussianExponentA); | |
4658 | 4676 | value /= pow(gaussianExponentA+gaussianExponentB, 2.0); |
4659 | 4677 | } |
4660 | 4678 | else if(valenceOrbitalA == px && valenceOrbitalB == dzx){ |
@@ -4662,170 +4680,170 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4662 | 4680 | double temp2 = -1.0*gaussianExponentA*dx*gaussianExponentB*dx*gaussianExponentA*dz; |
4663 | 4681 | temp2 /= gaussianExponentA+gaussianExponentB; |
4664 | 4682 | value = temp1 + temp2; |
4665 | - value *= 8.0*gaussianExponentB*pow(gaussianExponentA, 0.5); | |
4683 | + value *= 8.0*gaussianExponentB*sqrt(gaussianExponentA); | |
4666 | 4684 | value /= pow(gaussianExponentA+gaussianExponentB, 2.0); |
4667 | 4685 | } |
4668 | 4686 | |
4669 | 4687 | else if(valenceOrbitalA == dxy && valenceOrbitalB == pz){ |
4670 | - value = 8.0*gaussianExponentA*pow(gaussianExponentB, 0.5); | |
4688 | + value = 8.0*gaussianExponentA*sqrt(gaussianExponentB); | |
4671 | 4689 | value /= pow(gaussianExponentA+gaussianExponentB, 3.0); |
4672 | 4690 | value *= gaussianExponentB*dx*gaussianExponentB*dy*gaussianExponentA*dz; |
4673 | 4691 | } |
4674 | 4692 | else if(valenceOrbitalA == dyz && valenceOrbitalB == px){ |
4675 | - value = 8.0*gaussianExponentA*pow(gaussianExponentB, 0.5); | |
4693 | + value = 8.0*gaussianExponentA*sqrt(gaussianExponentB); | |
4676 | 4694 | value /= pow(gaussianExponentA+gaussianExponentB, 3.0); |
4677 | 4695 | value *= gaussianExponentB*dy*gaussianExponentB*dz*gaussianExponentA*dx; |
4678 | 4696 | } |
4679 | 4697 | else if(valenceOrbitalA == dzx && valenceOrbitalB == py){ |
4680 | - value = 8.0*gaussianExponentA*pow(gaussianExponentB, 0.5); | |
4698 | + value = 8.0*gaussianExponentA*sqrt(gaussianExponentB); | |
4681 | 4699 | value /= pow(gaussianExponentA+gaussianExponentB, 3.0); |
4682 | 4700 | value *= gaussianExponentB*dz*gaussianExponentB*dx*gaussianExponentA*dy; |
4683 | 4701 | } |
4684 | 4702 | |
4685 | 4703 | else if(valenceOrbitalA == pz && valenceOrbitalB == dxy){ |
4686 | - value = -8.0*gaussianExponentB*pow(gaussianExponentA, 0.5); | |
4704 | + value = -8.0*gaussianExponentB*sqrt(gaussianExponentA); | |
4687 | 4705 | value /= pow(gaussianExponentA+gaussianExponentB, 3.0); |
4688 | 4706 | value *= gaussianExponentA*dx*gaussianExponentA*dy*gaussianExponentB*dz; |
4689 | 4707 | } |
4690 | 4708 | else if(valenceOrbitalA == px && valenceOrbitalB == dyz){ |
4691 | - value = -8.0*gaussianExponentB*pow(gaussianExponentA, 0.5); | |
4709 | + value = -8.0*gaussianExponentB*sqrt(gaussianExponentA); | |
4692 | 4710 | value /= pow(gaussianExponentA+gaussianExponentB, 3.0); |
4693 | 4711 | value *= gaussianExponentA*dy*gaussianExponentA*dz*gaussianExponentB*dx; |
4694 | 4712 | } |
4695 | 4713 | else if(valenceOrbitalA == py && valenceOrbitalB == dzx){ |
4696 | - value = -8.0*gaussianExponentB*pow(gaussianExponentA, 0.5); | |
4714 | + value = -8.0*gaussianExponentB*sqrt(gaussianExponentA); | |
4697 | 4715 | value /= pow(gaussianExponentA+gaussianExponentB, 3.0); |
4698 | 4716 | value *= gaussianExponentA*dz*gaussianExponentA*dx*gaussianExponentB*dy; |
4699 | 4717 | } |
4700 | 4718 | |
4701 | 4719 | else if(valenceOrbitalA == dxxyy && valenceOrbitalB == s){ |
4702 | 4720 | value = 2.0*gaussianExponentA; |
4703 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4704 | - value *= pow(gaussianExponentB*dx, 2.0) - pow(gaussianExponentB*dy, 2.0); | |
4721 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4722 | + value *= (gaussianExponentB*gaussianExponentB*dx*dx) - (gaussianExponentB*gaussianExponentB*dy*dy); | |
4705 | 4723 | } |
4706 | 4724 | else if(valenceOrbitalA == s && valenceOrbitalB == dxxyy){ |
4707 | 4725 | value = 2.0*gaussianExponentB; |
4708 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4709 | - value *= pow(gaussianExponentA*dx, 2.0) - pow(gaussianExponentA*dy, 2.0); | |
4726 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4727 | + value *= (gaussianExponentA*gaussianExponentA*dx*dx) - (gaussianExponentA*gaussianExponentA*dy*dy); | |
4710 | 4728 | } |
4711 | 4729 | else if(valenceOrbitalA == dxxyy && valenceOrbitalB == px){ |
4712 | 4730 | value = gaussianExponentB*dx; |
4713 | - value -= pow(gaussianExponentB*dx, 2.0)*gaussianExponentA*dx/(gaussianExponentA+gaussianExponentB); | |
4714 | - value += pow(gaussianExponentB*dy, 2.0)*gaussianExponentA*dx/(gaussianExponentA+gaussianExponentB); | |
4715 | - value *= -4.0*gaussianExponentA*pow(gaussianExponentB, 0.5); | |
4731 | + value -= (gaussianExponentB*gaussianExponentB*dx*dx)*gaussianExponentA*dx/(gaussianExponentA+gaussianExponentB); | |
4732 | + value += (gaussianExponentB*gaussianExponentB*dy*dy)*gaussianExponentA*dx/(gaussianExponentA+gaussianExponentB); | |
4733 | + value *= -4.0*gaussianExponentA*sqrt(gaussianExponentB); | |
4716 | 4734 | value /= pow(gaussianExponentA+gaussianExponentB, 2.0); |
4717 | 4735 | } |
4718 | 4736 | else if(valenceOrbitalA == px && valenceOrbitalB == dxxyy){ |
4719 | 4737 | value = gaussianExponentA*dx; |
4720 | - value -= pow(gaussianExponentA*dx, 2.0)*gaussianExponentB*dx/(gaussianExponentA+gaussianExponentB); | |
4721 | - value += pow(gaussianExponentA*dy, 2.0)*gaussianExponentB*dx/(gaussianExponentA+gaussianExponentB); | |
4722 | - value *= 4.0*gaussianExponentB*pow(gaussianExponentA, 0.5); | |
4738 | + value -= (gaussianExponentA*gaussianExponentA*dx*dx)*gaussianExponentB*dx/(gaussianExponentA+gaussianExponentB); | |
4739 | + value += (gaussianExponentA*gaussianExponentA*dy*dy)*gaussianExponentB*dx/(gaussianExponentA+gaussianExponentB); | |
4740 | + value *= 4.0*gaussianExponentB*sqrt(gaussianExponentA); | |
4723 | 4741 | value /= pow(gaussianExponentA+gaussianExponentB, 2.0); |
4724 | 4742 | } |
4725 | 4743 | else if(valenceOrbitalA == dxxyy && valenceOrbitalB == py){ |
4726 | 4744 | value = gaussianExponentB*dy; |
4727 | - value += pow(gaussianExponentB*dx, 2.0)*gaussianExponentA*dy/(gaussianExponentA+gaussianExponentB); | |
4728 | - value -= pow(gaussianExponentB*dy, 2.0)*gaussianExponentA*dy/(gaussianExponentA+gaussianExponentB); | |
4729 | - value *= 4.0*gaussianExponentA*pow(gaussianExponentB, 0.5); | |
4745 | + value += (gaussianExponentB*gaussianExponentB*dx*dx)*gaussianExponentA*dy/(gaussianExponentA+gaussianExponentB); | |
4746 | + value -= (gaussianExponentB*gaussianExponentB*dy*dy)*gaussianExponentA*dy/(gaussianExponentA+gaussianExponentB); | |
4747 | + value *= 4.0*gaussianExponentA*sqrt(gaussianExponentB); | |
4730 | 4748 | value /= pow(gaussianExponentA+gaussianExponentB, 2.0); |
4731 | 4749 | } |
4732 | 4750 | else if(valenceOrbitalA == py && valenceOrbitalB == dxxyy){ |
4733 | 4751 | value = gaussianExponentA*dy; |
4734 | - value += pow(gaussianExponentA*dx, 2.0)*gaussianExponentB*dy/(gaussianExponentA+gaussianExponentB); | |
4735 | - value -= pow(gaussianExponentA*dy, 2.0)*gaussianExponentB*dy/(gaussianExponentA+gaussianExponentB); | |
4736 | - value *= -4.0*gaussianExponentB*pow(gaussianExponentA, 0.5); | |
4752 | + value += (gaussianExponentA*gaussianExponentA*dx*dx)*gaussianExponentB*dy/(gaussianExponentA+gaussianExponentB); | |
4753 | + value -= (gaussianExponentA*gaussianExponentA*dy*dy)*gaussianExponentB*dy/(gaussianExponentA+gaussianExponentB); | |
4754 | + value *= -4.0*gaussianExponentB*sqrt(gaussianExponentA); | |
4737 | 4755 | value /= pow(gaussianExponentA+gaussianExponentB, 2.0); |
4738 | 4756 | } |
4739 | 4757 | else if(valenceOrbitalA == dxxyy && valenceOrbitalB == pz){ |
4740 | - value = pow(gaussianExponentB*dx, 2.0) - pow(gaussianExponentB*dy, 2.0); | |
4758 | + value = (gaussianExponentB*gaussianExponentB*dx*dx) - (gaussianExponentB*gaussianExponentB*dy*dy); | |
4741 | 4759 | value *= gaussianExponentA*dz; |
4742 | - value *= 4.0*gaussianExponentA*pow(gaussianExponentB, 0.5); | |
4760 | + value *= 4.0*gaussianExponentA*sqrt(gaussianExponentB); | |
4743 | 4761 | value /= pow(gaussianExponentA+gaussianExponentB, 3.0); |
4744 | 4762 | } |
4745 | 4763 | else if(valenceOrbitalA == pz && valenceOrbitalB == dxxyy){ |
4746 | - value = pow(gaussianExponentA*dx, 2.0) - pow(gaussianExponentA*dy, 2.0); | |
4764 | + value = (gaussianExponentA*gaussianExponentA*dx*dx) - (gaussianExponentA*gaussianExponentA*dy*dy); | |
4747 | 4765 | value *= gaussianExponentB*dz; |
4748 | - value *= -4.0*gaussianExponentB*pow(gaussianExponentA, 0.5); | |
4766 | + value *= -4.0*gaussianExponentB*sqrt(gaussianExponentA); | |
4749 | 4767 | value /= pow(gaussianExponentA+gaussianExponentB, 3.0); |
4750 | 4768 | } |
4751 | 4769 | |
4752 | 4770 | else if(valenceOrbitalA == dzz && valenceOrbitalB == s){ |
4753 | 4771 | double temp = 0.0; |
4754 | - temp = 2.0*pow(gaussianExponentB*dz, 2.0) | |
4755 | - - pow(gaussianExponentB*dx, 2.0) | |
4756 | - - pow(gaussianExponentB*dy, 2.0); | |
4772 | + temp = 2.0*(gaussianExponentB*gaussianExponentB*dz*dz) | |
4773 | + - (gaussianExponentB*gaussianExponentB*dx*dx) | |
4774 | + - (gaussianExponentB*gaussianExponentB*dy*dy); | |
4757 | 4775 | value = 2.0*gaussianExponentA/sqrt(3.0); |
4758 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4776 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4759 | 4777 | value *= temp; |
4760 | 4778 | } |
4761 | 4779 | else if(valenceOrbitalA == s && valenceOrbitalB == dzz){ |
4762 | 4780 | double temp = 0.0; |
4763 | - temp = 2.0*pow(gaussianExponentA*dz, 2.0) | |
4764 | - - pow(gaussianExponentA*dx, 2.0) | |
4765 | - - pow(gaussianExponentA*dy, 2.0); | |
4781 | + temp = 2.0*(gaussianExponentA*gaussianExponentA*dz*dz) | |
4782 | + - (gaussianExponentA*gaussianExponentA*dx*dx) | |
4783 | + - (gaussianExponentA*gaussianExponentA*dy*dy); | |
4766 | 4784 | value = 2.0*gaussianExponentB/sqrt(3.0); |
4767 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4785 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4768 | 4786 | value *= temp; |
4769 | 4787 | } |
4770 | 4788 | else if(valenceOrbitalA == dzz && valenceOrbitalB == px){ |
4771 | 4789 | double temp = 0.0; |
4772 | 4790 | temp = gaussianExponentB*dx; |
4773 | - temp += 2.0*pow(gaussianExponentB*dz, 2.0)*gaussianExponentA*dx/(gaussianExponentA+gaussianExponentB); | |
4774 | - temp -= pow(gaussianExponentB*dx, 2.0)*gaussianExponentA*dx/(gaussianExponentA+gaussianExponentB); | |
4775 | - temp -= pow(gaussianExponentB*dy, 2.0)*gaussianExponentA*dx/(gaussianExponentA+gaussianExponentB); | |
4791 | + temp += 2.0*(gaussianExponentB*gaussianExponentB*dz*dz)*gaussianExponentA*dx/(gaussianExponentA+gaussianExponentB); | |
4792 | + temp -= (gaussianExponentB*gaussianExponentB*dx*dx)*gaussianExponentA*dx/(gaussianExponentA+gaussianExponentB); | |
4793 | + temp -= (gaussianExponentB*gaussianExponentB*dy*dy)*gaussianExponentA*dx/(gaussianExponentA+gaussianExponentB); | |
4776 | 4794 | value = temp; |
4777 | - value *= 4.0*gaussianExponentA*pow(gaussianExponentB, 0.5)/sqrt(3.0); | |
4778 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4795 | + value *= 4.0*gaussianExponentA*sqrt(gaussianExponentB)/sqrt(3.0); | |
4796 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4779 | 4797 | } |
4780 | 4798 | else if(valenceOrbitalA == px && valenceOrbitalB == dzz){ |
4781 | 4799 | double temp = 0.0; |
4782 | 4800 | temp = gaussianExponentA*dx; |
4783 | - temp += 2.0*pow(gaussianExponentA*dz, 2.0)*gaussianExponentB*dx/(gaussianExponentA+gaussianExponentB); | |
4784 | - temp -= pow(gaussianExponentA*dx, 2.0)*gaussianExponentB*dx/(gaussianExponentA+gaussianExponentB); | |
4785 | - temp -= pow(gaussianExponentA*dy, 2.0)*gaussianExponentB*dx/(gaussianExponentA+gaussianExponentB); | |
4801 | + temp += 2.0*(gaussianExponentA*gaussianExponentA*dz*dz)*gaussianExponentB*dx/(gaussianExponentA+gaussianExponentB); | |
4802 | + temp -= (gaussianExponentA*gaussianExponentA*dx*dx)*gaussianExponentB*dx/(gaussianExponentA+gaussianExponentB); | |
4803 | + temp -= (gaussianExponentA*gaussianExponentA*dy*dy)*gaussianExponentB*dx/(gaussianExponentA+gaussianExponentB); | |
4786 | 4804 | value = temp; |
4787 | - value *= -4.0*gaussianExponentB*pow(gaussianExponentA, 0.5)/sqrt(3.0); | |
4788 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4805 | + value *= -4.0*gaussianExponentB*sqrt(gaussianExponentA)/sqrt(3.0); | |
4806 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4789 | 4807 | } |
4790 | 4808 | else if(valenceOrbitalA == dzz && valenceOrbitalB == py){ |
4791 | 4809 | double temp = 0.0; |
4792 | 4810 | temp = gaussianExponentB*dy; |
4793 | - temp += 2.0*pow(gaussianExponentB*dz, 2.0)*gaussianExponentA*dy/(gaussianExponentA+gaussianExponentB); | |
4794 | - temp -= pow(gaussianExponentB*dx, 2.0)*gaussianExponentA*dy/(gaussianExponentA+gaussianExponentB); | |
4795 | - temp -= pow(gaussianExponentB*dy, 2.0)*gaussianExponentA*dy/(gaussianExponentA+gaussianExponentB); | |
4811 | + temp += 2.0*(gaussianExponentB*gaussianExponentB*dz*dz)*gaussianExponentA*dy/(gaussianExponentA+gaussianExponentB); | |
4812 | + temp -= (gaussianExponentB*gaussianExponentB*dx*dx)*gaussianExponentA*dy/(gaussianExponentA+gaussianExponentB); | |
4813 | + temp -= (gaussianExponentB*gaussianExponentB*dy*dy)*gaussianExponentA*dy/(gaussianExponentA+gaussianExponentB); | |
4796 | 4814 | value = temp; |
4797 | - value *= 4.0*gaussianExponentA*pow(gaussianExponentB, 0.5)/sqrt(3.0); | |
4798 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4815 | + value *= 4.0*gaussianExponentA*sqrt(gaussianExponentB)/sqrt(3.0); | |
4816 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4799 | 4817 | } |
4800 | 4818 | else if(valenceOrbitalA == py && valenceOrbitalB == dzz){ |
4801 | 4819 | double temp = 0.0; |
4802 | 4820 | temp = gaussianExponentA*dy; |
4803 | - temp += 2.0*pow(gaussianExponentA*dz, 2.0)*gaussianExponentB*dy/(gaussianExponentA+gaussianExponentB); | |
4804 | - temp -= pow(gaussianExponentA*dx, 2.0)*gaussianExponentB*dy/(gaussianExponentA+gaussianExponentB); | |
4805 | - temp -= pow(gaussianExponentA*dy, 2.0)*gaussianExponentB*dy/(gaussianExponentA+gaussianExponentB); | |
4821 | + temp += 2.0*(gaussianExponentA*gaussianExponentA*dz*dz)*gaussianExponentB*dy/(gaussianExponentA+gaussianExponentB); | |
4822 | + temp -= (gaussianExponentA*gaussianExponentA*dx*dx)*gaussianExponentB*dy/(gaussianExponentA+gaussianExponentB); | |
4823 | + temp -= (gaussianExponentA*gaussianExponentA*dy*dy)*gaussianExponentB*dy/(gaussianExponentA+gaussianExponentB); | |
4806 | 4824 | value = temp; |
4807 | - value *= -4.0*gaussianExponentB*pow(gaussianExponentA, 0.5)/sqrt(3.0); | |
4808 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4825 | + value *= -4.0*gaussianExponentB*sqrt(gaussianExponentA)/sqrt(3.0); | |
4826 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4809 | 4827 | } |
4810 | 4828 | else if(valenceOrbitalA == dzz && valenceOrbitalB == pz){ |
4811 | 4829 | double temp = 0.0; |
4812 | 4830 | temp = -2.0*gaussianExponentB*dz; |
4813 | - temp += 2.0*pow(gaussianExponentB*dz, 2.0)*gaussianExponentA*dz/(gaussianExponentA+gaussianExponentB); | |
4814 | - temp -= pow(gaussianExponentB*dx, 2.0)*gaussianExponentA*dz/(gaussianExponentA+gaussianExponentB); | |
4815 | - temp -= pow(gaussianExponentB*dy, 2.0)*gaussianExponentA*dz/(gaussianExponentA+gaussianExponentB); | |
4831 | + temp += 2.0*(gaussianExponentB*gaussianExponentB*dz*dz)*gaussianExponentA*dz/(gaussianExponentA+gaussianExponentB); | |
4832 | + temp -= (gaussianExponentB*gaussianExponentB*dx*dx)*gaussianExponentA*dz/(gaussianExponentA+gaussianExponentB); | |
4833 | + temp -= (gaussianExponentB*gaussianExponentB*dy*dy)*gaussianExponentA*dz/(gaussianExponentA+gaussianExponentB); | |
4816 | 4834 | value = temp; |
4817 | - value *= 4.0*gaussianExponentA*pow(gaussianExponentB, 0.5)/sqrt(3.0); | |
4818 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4835 | + value *= 4.0*gaussianExponentA*sqrt(gaussianExponentB)/sqrt(3.0); | |
4836 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4819 | 4837 | } |
4820 | 4838 | else if(valenceOrbitalA == pz && valenceOrbitalB == dzz){ |
4821 | 4839 | double temp = 0.0; |
4822 | 4840 | temp = -2.0*gaussianExponentA*dz; |
4823 | - temp += 2.0*pow(gaussianExponentA*dz, 2.0)*gaussianExponentB*dz/(gaussianExponentA+gaussianExponentB); | |
4824 | - temp -= pow(gaussianExponentA*dx, 2.0)*gaussianExponentB*dz/(gaussianExponentA+gaussianExponentB); | |
4825 | - temp -= pow(gaussianExponentA*dy, 2.0)*gaussianExponentB*dz/(gaussianExponentA+gaussianExponentB); | |
4841 | + temp += 2.0*(gaussianExponentA*gaussianExponentA*dz*dz)*gaussianExponentB*dz/(gaussianExponentA+gaussianExponentB); | |
4842 | + temp -= (gaussianExponentA*gaussianExponentA*dx*dx)*gaussianExponentB*dz/(gaussianExponentA+gaussianExponentB); | |
4843 | + temp -= (gaussianExponentA*gaussianExponentA*dy*dy)*gaussianExponentB*dz/(gaussianExponentA+gaussianExponentB); | |
4826 | 4844 | value = temp; |
4827 | - value *= -4.0*gaussianExponentB*pow(gaussianExponentA, 0.5)/sqrt(3.0); | |
4828 | - value *= pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4845 | + value *= -4.0*gaussianExponentB*sqrt(gaussianExponentA)/sqrt(3.0); | |
4846 | + value /= (gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB); | |
4829 | 4847 | } |
4830 | 4848 | |
4831 | 4849 | else if(valenceOrbitalA == dxy && valenceOrbitalB == dxy){ |
@@ -4834,9 +4852,9 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4834 | 4852 | temp -= 0.5*gaussianExponentB*dy*gaussianExponentA*dy/(gaussianExponentA+gaussianExponentB); |
4835 | 4853 | temp += gaussianExponentB*dx*gaussianExponentA*dx |
4836 | 4854 | *gaussianExponentB*dy*gaussianExponentA*dy |
4837 | - *pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4855 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
4838 | 4856 | value = 16.0*temp*gaussianExponentA*gaussianExponentB |
4839 | - *pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4857 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
4840 | 4858 | } |
4841 | 4859 | else if(valenceOrbitalA == dyz && valenceOrbitalB == dyz){ |
4842 | 4860 | double temp = 0.25; |
@@ -4844,9 +4862,9 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4844 | 4862 | temp -= 0.5*gaussianExponentB*dz*gaussianExponentA*dz/(gaussianExponentA+gaussianExponentB); |
4845 | 4863 | temp += gaussianExponentB*dy*gaussianExponentA*dy |
4846 | 4864 | *gaussianExponentB*dz*gaussianExponentA*dz |
4847 | - *pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4865 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
4848 | 4866 | value = 16.0*temp*gaussianExponentA*gaussianExponentB |
4849 | - *pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4867 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
4850 | 4868 | } |
4851 | 4869 | else if(valenceOrbitalA == dzx && valenceOrbitalB == dzx){ |
4852 | 4870 | double temp = 0.25; |
@@ -4854,42 +4872,41 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4854 | 4872 | temp -= 0.5*gaussianExponentB*dx*gaussianExponentA*dx/(gaussianExponentA+gaussianExponentB); |
4855 | 4873 | temp += gaussianExponentB*dz*gaussianExponentA*dz |
4856 | 4874 | *gaussianExponentB*dx*gaussianExponentA*dx |
4857 | - *pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4875 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
4858 | 4876 | value = 16.0*temp*gaussianExponentA*gaussianExponentB |
4859 | - *pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4877 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
4860 | 4878 | } |
4861 | 4879 | else if(valenceOrbitalA == dxxyy && valenceOrbitalB == dxxyy){ |
4862 | 4880 | double temp1 = 1.0; |
4863 | 4881 | temp1 -= 2.0*gaussianExponentB*dx*gaussianExponentA*dx/(gaussianExponentA+gaussianExponentB); |
4864 | 4882 | temp1 -= 2.0*gaussianExponentB*dy*gaussianExponentA*dy/(gaussianExponentA+gaussianExponentB); |
4865 | - double temp2 = gaussianExponentA*gaussianExponentB*(pow(dx,2.0)-pow(dy,2.0)) | |
4883 | + double temp2 = gaussianExponentA*gaussianExponentB*((dx*dx)-(dy*dy)) | |
4866 | 4884 | /(gaussianExponentA+gaussianExponentB); |
4867 | 4885 | temp1 += pow(temp2,2.0); |
4868 | 4886 | value = 4.0*temp1*gaussianExponentA*gaussianExponentB |
4869 | - *pow(gaussianExponentA+gaussianExponentB, -2.0); | |
4887 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
4870 | 4888 | } |
4871 | 4889 | else if(valenceOrbitalA == dzz && valenceOrbitalB == dzz){ |
4872 | 4890 | double temp = 3.0; |
4873 | 4891 | temp -= gaussianExponentA*gaussianExponentB |
4874 | 4892 | /(gaussianExponentA+gaussianExponentB) |
4875 | - *(8.0*pow(dz,2.0)+2.0*pow(dx,2.0)+2.0*pow(dy,2.0)); | |
4893 | + *(8.0*(dz*dz)+2.0*(dx*dx)+2.0*(dy*dy)); | |
4876 | 4894 | temp += pow(gaussianExponentA*gaussianExponentB,2.0) |
4877 | - *pow(gaussianExponentA+gaussianExponentB, -2.0) | |
4878 | - *(4.0*pow(dz,4.0) | |
4879 | - +pow(dx,4.0) | |
4880 | - +pow(dy,4.0) | |
4881 | - -4.0*pow(dx*dz,2.0) | |
4882 | - -4.0*pow(dy*dz,2.0) | |
4883 | - +2.0*pow(dx*dy,2.0)); | |
4895 | + *(4.0*(dz*dz*dz*dz) | |
4896 | + +(dx*dx*dx*dx) | |
4897 | + +(dy*dy*dy*dy) | |
4898 | + -4.0*(dx*dx*dz*dz) | |
4899 | + -4.0*(dy*dy*dz*dz) | |
4900 | + +2.0*(dx*dx*dy*dy)) | |
4901 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
4884 | 4902 | value = 4.0*temp*gaussianExponentA*gaussianExponentB |
4885 | - *pow(gaussianExponentA+gaussianExponentB, -2.0) | |
4886 | - /3.0; | |
4903 | + /(3.0*(gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
4887 | 4904 | } |
4888 | 4905 | |
4889 | 4906 | else if((valenceOrbitalA == dxy && valenceOrbitalB == dyz) || |
4890 | 4907 | (valenceOrbitalA == dyz && valenceOrbitalB == dxy)){ |
4891 | 4908 | double temp = 0.5; |
4892 | - temp -= gaussianExponentA*gaussianExponentB*pow(dy,2.0)/(gaussianExponentA+gaussianExponentB); | |
4909 | + temp -= gaussianExponentA*gaussianExponentB*(dy*dy)/(gaussianExponentA+gaussianExponentB); | |
4893 | 4910 | value = -16.0*pow(gaussianExponentA*gaussianExponentB,2.0) |
4894 | 4911 | *pow(gaussianExponentA+gaussianExponentB,-3.0) |
4895 | 4912 | *dx*dz*temp; |
@@ -4897,7 +4914,7 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4897 | 4914 | else if((valenceOrbitalA == dyz && valenceOrbitalB == dzx) || |
4898 | 4915 | (valenceOrbitalA == dzx && valenceOrbitalB == dyz)){ |
4899 | 4916 | double temp = 0.5; |
4900 | - temp -= gaussianExponentA*gaussianExponentB*pow(dz,2.0)/(gaussianExponentA+gaussianExponentB); | |
4917 | + temp -= gaussianExponentA*gaussianExponentB*(dz*dz)/(gaussianExponentA+gaussianExponentB); | |
4901 | 4918 | value = -16.0*pow(gaussianExponentA*gaussianExponentB,2.0) |
4902 | 4919 | *pow(gaussianExponentA+gaussianExponentB,-3.0) |
4903 | 4920 | *dy*dx*temp; |
@@ -4905,7 +4922,7 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4905 | 4922 | else if((valenceOrbitalA == dzx && valenceOrbitalB == dxy) || |
4906 | 4923 | (valenceOrbitalA == dxy && valenceOrbitalB == dzx)){ |
4907 | 4924 | double temp = 0.5; |
4908 | - temp -= gaussianExponentA*gaussianExponentB*pow(dx,2.0)/(gaussianExponentA+gaussianExponentB); | |
4925 | + temp -= gaussianExponentA*gaussianExponentB*(dx*dx)/(gaussianExponentA+gaussianExponentB); | |
4909 | 4926 | value = -16.0*pow(gaussianExponentA*gaussianExponentB,2.0) |
4910 | 4927 | *pow(gaussianExponentA+gaussianExponentB,-3.0) |
4911 | 4928 | *dz*dy*temp; |
@@ -4922,7 +4939,7 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4922 | 4939 | double temp = 2.0*gaussianExponentA*gaussianExponentB; |
4923 | 4940 | value = pow(temp,3.0)*(dy*dz*(gaussianExponentA+gaussianExponentB) |
4924 | 4941 | /(gaussianExponentA*gaussianExponentB) |
4925 | - +(pow(dx,2.0)*dy*dz - pow(dy,3.0)*dz)) | |
4942 | + +((dx*dx)*dy*dz - pow(dy,3.0)*dz)) | |
4926 | 4943 | *pow(gaussianExponentA+gaussianExponentB,-4.0); |
4927 | 4944 | } |
4928 | 4945 | else if((valenceOrbitalA == dxxyy && valenceOrbitalB == dzx) || |
@@ -4930,13 +4947,13 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4930 | 4947 | double temp = 2.0*gaussianExponentA*gaussianExponentB; |
4931 | 4948 | value = -1.0*pow(temp,3.0)*(dx*dz*(gaussianExponentA+gaussianExponentB) |
4932 | 4949 | /(gaussianExponentA*gaussianExponentB) |
4933 | - +(pow(dy,2.0)*dx*dz - pow(dx,3.0)*dz)) | |
4950 | + +((dy*dy)*dx*dz - pow(dx,3.0)*dz)) | |
4934 | 4951 | *pow(gaussianExponentA+gaussianExponentB,-4.0); |
4935 | 4952 | } |
4936 | 4953 | |
4937 | 4954 | else if((valenceOrbitalA == dzz && valenceOrbitalB == dxy) || |
4938 | 4955 | (valenceOrbitalA == dxy && valenceOrbitalB == dzz)){ |
4939 | - double temp = 2.0*dx*dy*pow(dz,2.0) - pow(dx,3.0)*dy - dx*pow(dy,3.0); | |
4956 | + double temp = 2.0*dx*dy*(dz*dz) - pow(dx,3.0)*dy - dx*pow(dy,3.0); | |
4940 | 4957 | temp *= gaussianExponentA*gaussianExponentB/(gaussianExponentA+gaussianExponentB); |
4941 | 4958 | temp += 2.0*dx*dy; |
4942 | 4959 | value = 8.0*pow(gaussianExponentA*gaussianExponentB,2.0)*temp; |
@@ -4945,7 +4962,7 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4945 | 4962 | else if((valenceOrbitalA == dzz && valenceOrbitalB == dyz) || |
4946 | 4963 | (valenceOrbitalA == dyz && valenceOrbitalB == dzz)){ |
4947 | 4964 | double temp1 = -1.0*dy*dz; |
4948 | - double temp2 = 2.0*dy*pow(dz,3.0) - pow(dy,3.0)*dz - pow(dx,2.0)*dy*dz; | |
4965 | + double temp2 = 2.0*dy*pow(dz,3.0) - pow(dy,3.0)*dz - (dx*dx)*dy*dz; | |
4949 | 4966 | temp2 *= gaussianExponentA*gaussianExponentB/(gaussianExponentA+gaussianExponentB); |
4950 | 4967 | temp1 += temp2; |
4951 | 4968 | value = 8.0*pow(gaussianExponentA*gaussianExponentB,2.0)*temp1; |
@@ -4954,7 +4971,7 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4954 | 4971 | else if((valenceOrbitalA == dzz && valenceOrbitalB == dzx) || |
4955 | 4972 | (valenceOrbitalA == dzx && valenceOrbitalB == dzz)){ |
4956 | 4973 | double temp1 = -1.0*dx*dz; |
4957 | - double temp2 = 2.0*dx*pow(dz,3.0) - pow(dx,3.0)*dz - pow(dy,2.0)*dx*dz; | |
4974 | + double temp2 = 2.0*dx*pow(dz,3.0) - pow(dx,3.0)*dz - (dy*dy)*dx*dz; | |
4958 | 4975 | temp2 *= gaussianExponentA*gaussianExponentB/(gaussianExponentA+gaussianExponentB); |
4959 | 4976 | temp1 += temp2; |
4960 | 4977 | value = 8.0*pow(gaussianExponentA*gaussianExponentB,2.0)*temp1; |
@@ -4962,12 +4979,12 @@ double Cndo2::GetGaussianOverlapAOs(AtomType atomTypeA, | ||
4962 | 4979 | } |
4963 | 4980 | else if((valenceOrbitalA == dxxyy && valenceOrbitalB == dzz) || |
4964 | 4981 | (valenceOrbitalA == dzz && valenceOrbitalB == dxxyy)){ |
4965 | - double temp = 2.0*pow(dz,2.0)-pow(dx,2.0)-pow(dy,2.0); | |
4982 | + double temp = 2.0*(dz*dz)-(dx*dx)-(dy*dy); | |
4966 | 4983 | temp *= gaussianExponentA*gaussianExponentB/(gaussianExponentA+gaussianExponentB); |
4967 | 4984 | temp += 2.0; |
4968 | 4985 | value = 4.0*pow(gaussianExponentA*gaussianExponentB,2.0); |
4969 | 4986 | value /= sqrt(3.0)*pow(gaussianExponentA+gaussianExponentB,3.0); |
4970 | - value *= (pow(dx,2.0)-pow(dy,2.0))*temp; | |
4987 | + value *= ((dx*dx)-(dy*dy))*temp; | |
4971 | 4988 | } |
4972 | 4989 | |
4973 | 4990 | else{ |
@@ -5000,7 +5017,7 @@ double Cndo2::GetOverlapAOsElement1stDerivativeByGTOExpansion(const Atom& atomA, | ||
5000 | 5017 | double dx = atomA.GetXyz()[XAxis] - atomB.GetXyz()[XAxis]; |
5001 | 5018 | double dy = atomA.GetXyz()[YAxis] - atomB.GetXyz()[YAxis]; |
5002 | 5019 | double dz = atomA.GetXyz()[ZAxis] - atomB.GetXyz()[ZAxis]; |
5003 | - double rAB = sqrt( pow(dx, 2.0) + pow(dy, 2.0) + pow(dz,2.0) ); | |
5020 | + double rAB = sqrt( dx*dx + dy*dy + dz*dz ); | |
5004 | 5021 | ShellType shellTypeA = atomA.GetValenceShellType(); |
5005 | 5022 | ShellType shellTypeB = atomB.GetValenceShellType(); |
5006 | 5023 | OrbitalType valenceOrbitalA = atomA.GetValence(valenceIndexA); |
@@ -5025,12 +5042,12 @@ double Cndo2::GetOverlapAOsElement1stDerivativeByGTOExpansion(const Atom& atomA, | ||
5025 | 5042 | shellTypeB, |
5026 | 5043 | valenceOrbitalB, |
5027 | 5044 | j); |
5028 | - gaussianExponentA = pow(orbitalExponentA, 2.0) | |
5045 | + gaussianExponentA = (orbitalExponentA*orbitalExponentA) | |
5029 | 5046 | *GTOExpansionSTO::GetInstance()->GetExponent(stonG, |
5030 | 5047 | shellTypeA, |
5031 | 5048 | valenceOrbitalA, |
5032 | 5049 | i); |
5033 | - gaussianExponentB = pow(orbitalExponentB, 2.0) | |
5050 | + gaussianExponentB = (orbitalExponentB*orbitalExponentB) | |
5034 | 5051 | *GTOExpansionSTO::GetInstance()->GetExponent(stonG, |
5035 | 5052 | shellTypeB, |
5036 | 5053 | valenceOrbitalB, |
@@ -5079,10 +5096,10 @@ double Cndo2::GetGaussianOverlapAOs1stDerivative(AtomType atomTypeA, | ||
5079 | 5096 | } |
5080 | 5097 | } |
5081 | 5098 | else if(valenceOrbitalA == s && valenceOrbitalB == px){ |
5082 | - double temp1 = 4.0*pow(gaussianExponentA,2.0)*pow(gaussianExponentB, 1.5) | |
5083 | - /pow(gaussianExponentA+gaussianExponentB,2.0); | |
5099 | + double temp1 = 4.0*(gaussianExponentA*gaussianExponentA)*gaussianExponentB*sqrt(gaussianExponentB) | |
5100 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
5084 | 5101 | if(axisA == XAxis){ |
5085 | - double temp2 = 2.0*gaussianExponentA*pow(gaussianExponentB, 0.5) | |
5102 | + double temp2 = 2.0*gaussianExponentA*sqrt(gaussianExponentB) | |
5086 | 5103 | /(gaussianExponentA+gaussianExponentB); |
5087 | 5104 | value = temp2-temp1*dx*dx; |
5088 | 5105 | } |
@@ -5094,13 +5111,13 @@ double Cndo2::GetGaussianOverlapAOs1stDerivative(AtomType atomTypeA, | ||
5094 | 5111 | } |
5095 | 5112 | } |
5096 | 5113 | else if(valenceOrbitalA == s && valenceOrbitalB == py){ |
5097 | - double temp1 = 4.0*pow(gaussianExponentA,2.0)*pow(gaussianExponentB, 1.5) | |
5098 | - /pow(gaussianExponentA+gaussianExponentB,2.0); | |
5114 | + double temp1 = 4.0*(gaussianExponentA*gaussianExponentA)*gaussianExponentB*sqrt(gaussianExponentB) | |
5115 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
5099 | 5116 | if(axisA == XAxis){ |
5100 | 5117 | value = -1.0*temp1*dx*dy; |
5101 | 5118 | } |
5102 | 5119 | else if(axisA == YAxis){ |
5103 | - double temp2 = 2.0*gaussianExponentA*pow(gaussianExponentB, 0.5) | |
5120 | + double temp2 = 2.0*gaussianExponentA*sqrt(gaussianExponentB) | |
5104 | 5121 | /(gaussianExponentA+gaussianExponentB); |
5105 | 5122 | value = temp2-temp1*dy*dy; |
5106 | 5123 | } |
@@ -5109,8 +5126,8 @@ double Cndo2::GetGaussianOverlapAOs1stDerivative(AtomType atomTypeA, | ||
5109 | 5126 | } |
5110 | 5127 | } |
5111 | 5128 | else if(valenceOrbitalA == s && valenceOrbitalB == pz){ |
5112 | - double temp1 = 4.0*pow(gaussianExponentA,2.0)*pow(gaussianExponentB, 1.5) | |
5113 | - /pow(gaussianExponentA+gaussianExponentB,2.0); | |
5129 | + double temp1 = 4.0*(gaussianExponentA*gaussianExponentA)*gaussianExponentB*sqrt(gaussianExponentB) | |
5130 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
5114 | 5131 | if(axisA == XAxis){ |
5115 | 5132 | value = -1.0*temp1*dx*dz; |
5116 | 5133 | } |
@@ -5118,16 +5135,17 @@ double Cndo2::GetGaussianOverlapAOs1stDerivative(AtomType atomTypeA, | ||
5118 | 5135 | value = -1.0*temp1*dy*dz; |
5119 | 5136 | } |
5120 | 5137 | else if(axisA == ZAxis){ |
5121 | - double temp2 = 2.0*gaussianExponentA*pow(gaussianExponentB, 0.5) | |
5138 | + double temp2 = 2.0*gaussianExponentA*sqrt(gaussianExponentB) | |
5122 | 5139 | /(gaussianExponentA+gaussianExponentB); |
5123 | 5140 | value = temp2-temp1*dz*dz; |
5124 | 5141 | } |
5125 | 5142 | } |
5126 | 5143 | else if(valenceOrbitalA == px && valenceOrbitalB == s){ |
5127 | - double temp1 = 4.0*pow(gaussianExponentA,1.5)*pow(gaussianExponentB, 2.0) | |
5128 | - /pow(gaussianExponentA+gaussianExponentB,2.0); | |
5144 | + double temp1 = 4.0*gaussianExponentA*sqrt(gaussianExponentA) | |
5145 | + *gaussianExponentB*gaussianExponentB | |
5146 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
5129 | 5147 | if(axisA == XAxis){ |
5130 | - double temp2 = 2.0*pow(gaussianExponentA,0.5)*gaussianExponentB | |
5148 | + double temp2 = 2.0*sqrt(gaussianExponentA)*gaussianExponentB | |
5131 | 5149 | /(gaussianExponentA+gaussianExponentB); |
5132 | 5150 | value = -1.0*temp2+temp1*dx*dx; |
5133 | 5151 | } |
@@ -5139,13 +5157,14 @@ double Cndo2::GetGaussianOverlapAOs1stDerivative(AtomType atomTypeA, | ||
5139 | 5157 | } |
5140 | 5158 | } |
5141 | 5159 | else if(valenceOrbitalA == py && valenceOrbitalB == s){ |
5142 | - double temp1 = 4.0*pow(gaussianExponentA,1.5)*pow(gaussianExponentB, 2.0) | |
5143 | - /pow(gaussianExponentA+gaussianExponentB,2.0); | |
5160 | + double temp1 = 4.0*gaussianExponentA*sqrt(gaussianExponentA) | |
5161 | + *gaussianExponentB*gaussianExponentB | |
5162 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
5144 | 5163 | if(axisA == XAxis){ |
5145 | 5164 | value = temp1*dx*dy; |
5146 | 5165 | } |
5147 | 5166 | else if(axisA == YAxis){ |
5148 | - double temp2 = 2.0*pow(gaussianExponentA,0.5)*gaussianExponentB | |
5167 | + double temp2 = 2.0*sqrt(gaussianExponentA)*gaussianExponentB | |
5149 | 5168 | /(gaussianExponentA+gaussianExponentB); |
5150 | 5169 | value = -1.0*temp2+temp1*dy*dy; |
5151 | 5170 | } |
@@ -5154,8 +5173,9 @@ double Cndo2::GetGaussianOverlapAOs1stDerivative(AtomType atomTypeA, | ||
5154 | 5173 | } |
5155 | 5174 | } |
5156 | 5175 | else if(valenceOrbitalA == pz && valenceOrbitalB == s){ |
5157 | - double temp1 = 4.0*pow(gaussianExponentA,1.5)*pow(gaussianExponentB, 2.0) | |
5158 | - /pow(gaussianExponentA+gaussianExponentB,2.0); | |
5176 | + double temp1 = 4.0*gaussianExponentA*sqrt(gaussianExponentA) | |
5177 | + *gaussianExponentB*gaussianExponentB | |
5178 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
5159 | 5179 | if(axisA == XAxis){ |
5160 | 5180 | value = temp1*dx*dz; |
5161 | 5181 | } |
@@ -5163,7 +5183,7 @@ double Cndo2::GetGaussianOverlapAOs1stDerivative(AtomType atomTypeA, | ||
5163 | 5183 | value = temp1*dy*dz; |
5164 | 5184 | } |
5165 | 5185 | else if(axisA == ZAxis){ |
5166 | - double temp2 = 2.0*pow(gaussianExponentA,0.5)*gaussianExponentB | |
5186 | + double temp2 = 2.0*sqrt(gaussianExponentA)*gaussianExponentB | |
5167 | 5187 | /(gaussianExponentA+gaussianExponentB); |
5168 | 5188 | value = -1.0*temp2+temp1*dz*dz; |
5169 | 5189 | } |
@@ -5171,8 +5191,8 @@ double Cndo2::GetGaussianOverlapAOs1stDerivative(AtomType atomTypeA, | ||
5171 | 5191 | else if(valenceOrbitalA == px && valenceOrbitalB == py){ |
5172 | 5192 | double temp1 = 8.0*pow(gaussianExponentA*gaussianExponentB,2.5) |
5173 | 5193 | /pow(gaussianExponentA+gaussianExponentB,3.0); |
5174 | - double temp2 = 4.0*pow(gaussianExponentA*gaussianExponentB,1.5) | |
5175 | - /pow(gaussianExponentA+gaussianExponentB,2.0); | |
5194 | + double temp2 = 4.0*gaussianExponentA*gaussianExponentB*sqrt(gaussianExponentA*gaussianExponentB) | |
5195 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
5176 | 5196 | if(axisA == XAxis){ |
5177 | 5197 | value = -1.0*temp2*dy+temp1*dx*dx*dy; |
5178 | 5198 | } |
@@ -5186,8 +5206,8 @@ double Cndo2::GetGaussianOverlapAOs1stDerivative(AtomType atomTypeA, | ||
5186 | 5206 | else if(valenceOrbitalA == py && valenceOrbitalB == px){ |
5187 | 5207 | double temp1 = 8.0*pow(gaussianExponentA*gaussianExponentB,2.5) |
5188 | 5208 | /pow(gaussianExponentA+gaussianExponentB,3.0); |
5189 | - double temp2 = 4.0*pow(gaussianExponentA*gaussianExponentB,1.5) | |
5190 | - /pow(gaussianExponentA+gaussianExponentB,2.0); | |
5209 | + double temp2 = 4.0*gaussianExponentA*gaussianExponentB*sqrt(gaussianExponentA*gaussianExponentB) | |
5210 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
5191 | 5211 | if(axisA == XAxis){ |
5192 | 5212 | value = -1.0*temp2*dy+temp1*dy*dx*dx; |
5193 | 5213 | } |
@@ -5201,8 +5221,8 @@ double Cndo2::GetGaussianOverlapAOs1stDerivative(AtomType atomTypeA, | ||
5201 | 5221 | else if(valenceOrbitalA == px && valenceOrbitalB == pz){ |
5202 | 5222 | double temp1 = 8.0*pow(gaussianExponentA*gaussianExponentB,2.5) |
5203 | 5223 | /pow(gaussianExponentA+gaussianExponentB,3.0); |
5204 | - double temp2 = 4.0*pow(gaussianExponentA*gaussianExponentB,1.5) | |
5205 | - /pow(gaussianExponentA+gaussianExponentB,2.0); | |
5224 | + double temp2 = 4.0*gaussianExponentA*gaussianExponentB*sqrt(gaussianExponentA*gaussianExponentB) | |
5225 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
5206 | 5226 | if(axisA == XAxis){ |
5207 | 5227 | value = -1.0*temp2*dz+temp1*dx*dx*dz; |
5208 | 5228 | } |
@@ -5216,8 +5236,8 @@ double Cndo2::GetGaussianOverlapAOs1stDerivative(AtomType atomTypeA, | ||
5216 | 5236 | else if(valenceOrbitalA == pz && valenceOrbitalB == px){ |
5217 | 5237 | double temp1 = 8.0*pow(gaussianExponentA*gaussianExponentB,2.5) |
5218 | 5238 | /pow(gaussianExponentA+gaussianExponentB,3.0); |
5219 | - double temp2 = 4.0*pow(gaussianExponentA*gaussianExponentB,1.5) | |
5220 | - /pow(gaussianExponentA+gaussianExponentB,2.0); | |
5239 | + double temp2 = 4.0*gaussianExponentA*gaussianExponentB*sqrt(gaussianExponentA*gaussianExponentB) | |
5240 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
5221 | 5241 | if(axisA == XAxis){ |
5222 | 5242 | value = -1.0*temp2*dz+temp1*dz*dx*dx; |
5223 | 5243 | } |
@@ -5231,8 +5251,8 @@ double Cndo2::GetGaussianOverlapAOs1stDerivative(AtomType atomTypeA, | ||
5231 | 5251 | else if(valenceOrbitalA == py && valenceOrbitalB == pz){ |
5232 | 5252 | double temp1 = 8.0*pow(gaussianExponentA*gaussianExponentB,2.5) |
5233 | 5253 | /pow(gaussianExponentA+gaussianExponentB,3.0); |
5234 | - double temp2 = 4.0*pow(gaussianExponentA*gaussianExponentB,1.5) | |
5235 | - /pow(gaussianExponentA+gaussianExponentB,2.0); | |
5254 | + double temp2 = 4.0*gaussianExponentA*gaussianExponentB*sqrt(gaussianExponentA*gaussianExponentB) | |
5255 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
5236 | 5256 | if(axisA == XAxis){ |
5237 | 5257 | value = temp1*dx*dy*dz; |
5238 | 5258 | } |
@@ -5246,8 +5266,8 @@ double Cndo2::GetGaussianOverlapAOs1stDerivative(AtomType atomTypeA, | ||
5246 | 5266 | else if(valenceOrbitalA == pz && valenceOrbitalB == py){ |
5247 | 5267 | double temp1 = 8.0*pow(gaussianExponentA*gaussianExponentB,2.5) |
5248 | 5268 | /pow(gaussianExponentA+gaussianExponentB,3.0); |
5249 | - double temp2 = 4.0*pow(gaussianExponentA*gaussianExponentB,1.5) | |
5250 | - /pow(gaussianExponentA+gaussianExponentB,2.0); | |
5269 | + double temp2 = 4.0*gaussianExponentA*gaussianExponentB*sqrt(gaussianExponentA*gaussianExponentB) | |
5270 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
5251 | 5271 | if(axisA == XAxis){ |
5252 | 5272 | value = temp1*dx*dy*dz; |
5253 | 5273 | } |
@@ -5259,8 +5279,8 @@ double Cndo2::GetGaussianOverlapAOs1stDerivative(AtomType atomTypeA, | ||
5259 | 5279 | } |
5260 | 5280 | } |
5261 | 5281 | else if(valenceOrbitalA == px && valenceOrbitalB == px){ |
5262 | - double temp1 = 8.0*pow(gaussianExponentA*gaussianExponentB,1.5) | |
5263 | - /pow(gaussianExponentA+gaussianExponentB,2.0); | |
5282 | + double temp1 = 8.0*gaussianExponentA*gaussianExponentB*sqrt(gaussianExponentA*gaussianExponentB) | |
5283 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
5264 | 5284 | double temp2 = gaussianExponentA*gaussianExponentB |
5265 | 5285 | /(gaussianExponentA+gaussianExponentB); |
5266 | 5286 | if(axisA == XAxis){ |
@@ -5274,8 +5294,8 @@ double Cndo2::GetGaussianOverlapAOs1stDerivative(AtomType atomTypeA, | ||
5274 | 5294 | } |
5275 | 5295 | } |
5276 | 5296 | else if(valenceOrbitalA == py && valenceOrbitalB == py){ |
5277 | - double temp1 = 8.0*pow(gaussianExponentA*gaussianExponentB,1.5) | |
5278 | - /pow(gaussianExponentA+gaussianExponentB,2.0); | |
5297 | + double temp1 = 8.0*gaussianExponentA*gaussianExponentB*sqrt(gaussianExponentA*gaussianExponentB) | |
5298 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
5279 | 5299 | double temp2 = gaussianExponentA*gaussianExponentB |
5280 | 5300 | /(gaussianExponentA+gaussianExponentB); |
5281 | 5301 | if(axisA == XAxis){ |
@@ -5289,8 +5309,8 @@ double Cndo2::GetGaussianOverlapAOs1stDerivative(AtomType atomTypeA, | ||
5289 | 5309 | } |
5290 | 5310 | } |
5291 | 5311 | else if(valenceOrbitalA == pz && valenceOrbitalB == pz){ |
5292 | - double temp1 = 8.0*pow(gaussianExponentA*gaussianExponentB,1.5) | |
5293 | - /pow(gaussianExponentA+gaussianExponentB,2.0); | |
5312 | + double temp1 = 8.0*gaussianExponentA*gaussianExponentB*sqrt(gaussianExponentA*gaussianExponentB) | |
5313 | + /((gaussianExponentA+gaussianExponentB)*(gaussianExponentA+gaussianExponentB)); | |
5294 | 5314 | double temp2 = gaussianExponentA*gaussianExponentB |
5295 | 5315 | /(gaussianExponentA+gaussianExponentB); |
5296 | 5316 | if(axisA == XAxis){ |
@@ -5361,15 +5381,15 @@ void Cndo2::CalcRotatingMatrix(double** rotatingMatrix, | ||
5361 | 5381 | // rotating matrix for d-function |
5362 | 5382 | // dMatrix is (37) in J. Mol. Strct. 419, 19(1997) (ref. [BFB_1997]) |
5363 | 5383 | double dMatrix[OrbitalType_end][OrbitalType_end]; |
5364 | - dMatrix[dzz][dzz] = 0.5*(3.0*pow(cos(beta),2.0) - 1.0); | |
5365 | - dMatrix[dxxyy][dxxyy] = pow(cos(0.5*beta),4.0); | |
5366 | - dMatrix[dzx][dzx] = (2.0*cos(beta)-1.0)*pow(cos(0.5*beta),2.0); | |
5367 | - dMatrix[dxxyy][dzx] = -2.0*sin(0.5*beta)*pow(cos(0.5*beta),3.0); | |
5368 | - dMatrix[dxxyy][dzz] = sqrt(6.0)*pow(sin(0.5*beta),2.0)*pow(cos(0.5*beta),2.0); | |
5369 | - dMatrix[dxxyy][dyz] = -2.0*pow(sin(0.5*beta),3.0)*pow(cos(0.5*beta),1.0); | |
5370 | - dMatrix[dxxyy][dxy] = pow(sin(0.5*beta),4.0); | |
5384 | + dMatrix[dzz][dzz] = 0.5*(3.0*(cos(beta)*cos(beta)) - 1.0); | |
5385 | + dMatrix[dxxyy][dxxyy] = cos(0.5*beta)*cos(0.5*beta)*cos(0.5*beta)*cos(0.5*beta); | |
5386 | + dMatrix[dzx][dzx] = (2.0*cos(beta)-1.0)*cos(0.5*beta)*cos(0.5*beta); | |
5387 | + dMatrix[dxxyy][dzx] = -2.0*sin(0.5*beta)*cos(0.5*beta)*cos(0.5*beta)*cos(0.5*beta); | |
5388 | + dMatrix[dxxyy][dzz] = sqrt(6.0)*(sin(0.5*beta)*sin(0.5*beta))*((cos(0.5*beta))*(cos(0.5*beta))); | |
5389 | + dMatrix[dxxyy][dyz] = -2.0*sin(0.5*beta)*sin(0.5*beta)*sin(0.5*beta)*cos(0.5*beta); | |
5390 | + dMatrix[dxxyy][dxy] = sin(0.5*beta)*sin(0.5*beta)*sin(0.5*beta)*sin(0.5*beta); | |
5371 | 5391 | dMatrix[dzx][dzz] = -sqrt(6.0)*cos(beta)*cos(0.5*beta)*sin(0.5*beta); |
5372 | - dMatrix[dzx][dyz] = (2.0*cos(beta)+1.0)*pow(sin(0.5*beta),2.0); | |
5392 | + dMatrix[dzx][dyz] = (2.0*cos(beta)+1.0)*(sin(0.5*beta)*sin(0.5*beta)); | |
5373 | 5393 | |
5374 | 5394 | rotatingMatrix[dxy][dxy] = cos(2.0*alpha)* (dMatrix[dxxyy][dxxyy] - dMatrix[dxxyy][dxy]); |
5375 | 5395 | rotatingMatrix[dxy][dyz] = cos(2.0*alpha)* (-1.0*dMatrix[dxxyy][dzx] - dMatrix[dxxyy][dyz]); |
@@ -5420,8 +5440,8 @@ void Cndo2::CalcRotatingMatrix1stDerivatives(double*** rotMat1stDerivatives, | ||
5420 | 5440 | double x = atomB.GetXyz()[0] - atomA.GetXyz()[0]; |
5421 | 5441 | double y = atomB.GetXyz()[1] - atomA.GetXyz()[1]; |
5422 | 5442 | double z = atomB.GetXyz()[2] - atomA.GetXyz()[2]; |
5423 | - double r = sqrt( pow(x,2.0) + pow(y,2.0) ); | |
5424 | - double R = sqrt( pow(x,2.0) + pow(y,2.0) + pow(z,2.0) ); | |
5443 | + double r = sqrt( x*x + y*y ); | |
5444 | + double R = sqrt( x*x + y*y + z*z ); | |
5425 | 5445 | |
5426 | 5446 | if(r==0e0){ |
5427 | 5447 | return; |
@@ -5433,43 +5453,43 @@ void Cndo2::CalcRotatingMatrix1stDerivatives(double*** rotMat1stDerivatives, | ||
5433 | 5453 | rotMat1stDerivatives[s][s][ZAxis] = 0.0; |
5434 | 5454 | |
5435 | 5455 | // for p-function |
5436 | - rotMat1stDerivatives[py][py][XAxis] = -1.0/r + pow(x,2.0)/pow(r,3.0); | |
5437 | - rotMat1stDerivatives[py][pz][XAxis] = x*y/pow(R,3.0); | |
5438 | - rotMat1stDerivatives[py][px][XAxis] = (1.0/(pow(r,3.0)*R) + 1.0/(pow(R,3.0)*r))*x*y*z; | |
5456 | + rotMat1stDerivatives[py][py][XAxis] = -1.0/r + x*x/(r*r*r); | |
5457 | + rotMat1stDerivatives[py][pz][XAxis] = x*y/(R*R*R); | |
5458 | + rotMat1stDerivatives[py][px][XAxis] = (1.0/(r*r*r*R) + 1.0/(R*R*R*r))*x*y*z; | |
5439 | 5459 | |
5440 | 5460 | rotMat1stDerivatives[pz][py][XAxis] = 0.0; |
5441 | - rotMat1stDerivatives[pz][pz][XAxis] = x*z/pow(R,3.0); | |
5442 | - rotMat1stDerivatives[pz][px][XAxis] = x/(r*R) - x*r/pow(R,3.0); | |
5461 | + rotMat1stDerivatives[pz][pz][XAxis] = x*z/(R*R*R); | |
5462 | + rotMat1stDerivatives[pz][px][XAxis] = x/(r*R) - x*r/(R*R*R); | |
5443 | 5463 | |
5444 | - rotMat1stDerivatives[px][py][XAxis] = -1.0*x*y/pow(r,3.0); | |
5445 | - rotMat1stDerivatives[px][pz][XAxis] = -1.0/R + x*x/pow(R,3.0); | |
5464 | + rotMat1stDerivatives[px][py][XAxis] = -1.0*x*y/(r*r*r); | |
5465 | + rotMat1stDerivatives[px][pz][XAxis] = -1.0/R + x*x/(R*R*R); | |
5446 | 5466 | rotMat1stDerivatives[px][px][XAxis] = -1.0*z/(r*R) + |
5447 | - (1.0/(pow(r,3.0)*R) + 1.0/(pow(R,3.0)*r))*x*x*z; | |
5467 | + (1.0/(r*r*r*R) + 1.0/(R*R*R*r))*x*x*z; | |
5448 | 5468 | |
5449 | - rotMat1stDerivatives[py][py][YAxis] = x*y/pow(r,3.0); | |
5450 | - rotMat1stDerivatives[py][pz][YAxis] = -1.0/R + y*y/pow(R,3.0); | |
5469 | + rotMat1stDerivatives[py][py][YAxis] = x*y/(r*r*r); | |
5470 | + rotMat1stDerivatives[py][pz][YAxis] = -1.0/R + y*y/(R*R*R); | |
5451 | 5471 | rotMat1stDerivatives[py][px][YAxis] = -1.0*z/(r*R) + |
5452 | - (1.0/(pow(r,3.0)*R) + 1.0/(pow(R,3.0)*r))*y*y*z; | |
5472 | + (1.0/(r*r*r*R) + 1.0/(R*R*R*r))*y*y*z; | |
5453 | 5473 | |
5454 | 5474 | rotMat1stDerivatives[pz][py][YAxis] = 0.0; |
5455 | - rotMat1stDerivatives[pz][pz][YAxis] = y*z/pow(R,3.0); | |
5456 | - rotMat1stDerivatives[pz][px][YAxis] = y/(r*R) - y*r/pow(R,3.0); | |
5475 | + rotMat1stDerivatives[pz][pz][YAxis] = y*z/(R*R*R); | |
5476 | + rotMat1stDerivatives[pz][px][YAxis] = y/(r*R) - y*r/(R*R*R); | |
5457 | 5477 | |
5458 | - rotMat1stDerivatives[px][py][YAxis] = 1.0/r - y*y/pow(r,3.0); | |
5459 | - rotMat1stDerivatives[px][pz][YAxis] = x*y/pow(R,3.0); | |
5460 | - rotMat1stDerivatives[px][px][YAxis] = (1.0/(pow(r,3.0)*R) + 1.0/(pow(R,3.0)*r))*x*y*z; | |
5478 | + rotMat1stDerivatives[px][py][YAxis] = 1.0/r - y*y/(r*r*r); | |
5479 | + rotMat1stDerivatives[px][pz][YAxis] = x*y/(R*R*R); | |
5480 | + rotMat1stDerivatives[px][px][YAxis] = (1.0/(r*r*r*R) + 1.0/(R*R*R*r))*x*y*z; | |
5461 | 5481 | |
5462 | 5482 | rotMat1stDerivatives[py][py][ZAxis] = 0.0; |
5463 | - rotMat1stDerivatives[py][pz][ZAxis] = y*z/pow(R,3.0); | |
5464 | - rotMat1stDerivatives[py][px][ZAxis] = -1.0*y/(r*R) + y*z*z/(r*pow(R,3.0)); | |
5483 | + rotMat1stDerivatives[py][pz][ZAxis] = y*z/(R*R*R); | |
5484 | + rotMat1stDerivatives[py][px][ZAxis] = -1.0*y/(r*R) + y*z*z/(r*R*R*R); | |
5465 | 5485 | |
5466 | 5486 | rotMat1stDerivatives[pz][py][ZAxis] = 0.0; |
5467 | - rotMat1stDerivatives[pz][pz][ZAxis] = -1.0/R + z*z/pow(R,3.0); | |
5468 | - rotMat1stDerivatives[pz][px][ZAxis] = -1.0*z*r/pow(R,3.0); | |
5487 | + rotMat1stDerivatives[pz][pz][ZAxis] = -1.0/R + z*z/(R*R*R); | |
5488 | + rotMat1stDerivatives[pz][px][ZAxis] = -1.0*z*r/(R*R*R); | |
5469 | 5489 | |
5470 | 5490 | rotMat1stDerivatives[px][py][ZAxis] = 0.0; |
5471 | - rotMat1stDerivatives[px][pz][ZAxis] = x*z/pow(R,3.0); | |
5472 | - rotMat1stDerivatives[px][px][ZAxis] = -1.0*x/(r*R) + x*z*z/(r*pow(R,3.0)); | |
5491 | + rotMat1stDerivatives[px][pz][ZAxis] = x*z/(R*R*R); | |
5492 | + rotMat1stDerivatives[px][px][ZAxis] = -1.0*x/(r*R) + x*z*z/(r*R*R*R); | |
5473 | 5493 | |
5474 | 5494 | // for d-function |
5475 | 5495 | // ToDo: First derivative of rotating matrix for d-orbital... |
@@ -5495,16 +5515,16 @@ void Cndo2::CalcRotatingMatrix2ndDerivatives(double**** rotMat2ndDerivatives, | ||
5495 | 5515 | double x = atomB.GetXyz()[0] - atomA.GetXyz()[0]; |
5496 | 5516 | double y = atomB.GetXyz()[1] - atomA.GetXyz()[1]; |
5497 | 5517 | double z = atomB.GetXyz()[2] - atomA.GetXyz()[2]; |
5498 | - double r = sqrt( pow(x,2.0) + pow(y,2.0) ); | |
5499 | - double R = sqrt( pow(x,2.0) + pow(y,2.0) + pow(z,2.0) ); | |
5518 | + double r = sqrt( x*x + y*y ); | |
5519 | + double R = sqrt( x*x + y*y + z*z ); | |
5500 | 5520 | |
5501 | 5521 | if(r==0e0){ |
5502 | 5522 | return; |
5503 | 5523 | } |
5504 | 5524 | |
5505 | - double temp1 = 1.0/(pow(r,3.0)*R) + 1.0/(r*pow(R,3.0)); | |
5506 | - double temp2 = 2.0*pow(r*R,-3.0) + 3.0/(pow(r,5.0)*R) + 3.0/(r*pow(R,5.0)); | |
5507 | - double temp3 = pow(r*R,-3.0) + 3.0/(r*pow(R,5.0)); | |
5525 | + double temp1 = 1.0/(r*r*r*R) + 1.0/(r*R*R*R); | |
5526 | + double temp2 = 2.0/(r*r*r*R*R*R) + 3.0/(r*r*r*r*r*R) + 3.0/(r*R*R*R*R*R); | |
5527 | + double temp3 = 1.0/(r*r*r*R*R*R) + 3.0/(r*R*R*R*R*R); | |
5508 | 5528 | |
5509 | 5529 | // for s-function |
5510 | 5530 | rotMat2ndDerivatives[s][s][XAxis][XAxis] = 0.0; |
@@ -5518,29 +5538,29 @@ void Cndo2::CalcRotatingMatrix2ndDerivatives(double**** rotMat2ndDerivatives, | ||
5518 | 5538 | rotMat2ndDerivatives[s][s][ZAxis][ZAxis] = 0.0; |
5519 | 5539 | |
5520 | 5540 | // for p-function, xx-derivatives |
5521 | - rotMat2ndDerivatives[py][py][XAxis][XAxis] = -3.0*x*pow(r,-3.0) + 3.0*pow(x,3.0)*pow(r,-5.0); | |
5522 | - rotMat2ndDerivatives[py][pz][XAxis][XAxis] = -1.0*y*pow(R,-3.0) + 3.0*pow(x,2.0)*y*pow(R,-5.0); | |
5523 | - rotMat2ndDerivatives[py][px][XAxis][XAxis] = -1.0*temp1*y*z+temp2*pow(x,2.0)*y*z; | |
5541 | + rotMat2ndDerivatives[py][py][XAxis][XAxis] = -3.0*x/(r*r*r) + 3.0*x*x*x/(r*r*r*r*r); | |
5542 | + rotMat2ndDerivatives[py][pz][XAxis][XAxis] = -1.0*y/(R*R*R) + 3.0*x*x*y/(R*R*R*R*R); | |
5543 | + rotMat2ndDerivatives[py][px][XAxis][XAxis] = -1.0*temp1*y*z+temp2*x*x*y*z; | |
5524 | 5544 | |
5525 | 5545 | rotMat2ndDerivatives[pz][py][XAxis][XAxis] = 0.0; |
5526 | - rotMat2ndDerivatives[pz][pz][XAxis][XAxis] = -1.0*z*pow(R,-3.0) + 3.0*pow(x,2.0)*z*pow(R,-5.0); | |
5527 | - rotMat2ndDerivatives[pz][px][XAxis][XAxis] = -1.0*pow(r*R,-1.0) + temp1*pow(x,2.0) | |
5528 | - +r*pow(R,-3.0) - 3.0*pow(x,2.0)*r*pow(R,-5.0) + pow(x,2.0)*pow(r,-1.0)*pow(R,-3.0); | |
5546 | + rotMat2ndDerivatives[pz][pz][XAxis][XAxis] = -1.0*z/(R*R*R) + 3.0*x*x*z/(R*R*R*R*R); | |
5547 | + rotMat2ndDerivatives[pz][px][XAxis][XAxis] = -1.0/(r*R) + temp1*x*x | |
5548 | + +r/(R*R*R) - 3.0*x*x*r/(R*R*R*R*R) + x*x/(r*R*R*R); | |
5529 | 5549 | |
5530 | - rotMat2ndDerivatives[px][py][XAxis][XAxis] = y*pow(r,-3.0) - 3.0*pow(x,2.0)*y*pow(r,-5.0); | |
5531 | - rotMat2ndDerivatives[px][pz][XAxis][XAxis] = -3.0*x*pow(R,-3.0) + 3.0*pow(x,3.0)*pow(R,-5.0); | |
5532 | - rotMat2ndDerivatives[px][px][XAxis][XAxis] = -3.0*temp1*x*z+temp2*pow(x,3.0)*z; | |
5550 | + rotMat2ndDerivatives[px][py][XAxis][XAxis] = y/(r*r*r) - 3.0*x*x*y/(r*r*r*r*r); | |
5551 | + rotMat2ndDerivatives[px][pz][XAxis][XAxis] = -3.0*x/(R*R*R) + 3.0*x*x*x/(R*R*R*R*R); | |
5552 | + rotMat2ndDerivatives[px][px][XAxis][XAxis] = -3.0*temp1*x*z+temp2*x*x*x*z; | |
5533 | 5553 | |
5534 | 5554 | // for p-function, xy-derivatives |
5535 | - rotMat2ndDerivatives[py][py][XAxis][YAxis] = -1.0*y*pow(r,-3.0) + 3.0*pow(x,2.0)*y*pow(r,-5.0); | |
5536 | - rotMat2ndDerivatives[py][pz][XAxis][YAxis] = -1.0*x*pow(R,-3.0) + 3.0*x*pow(y,2.0)*pow(R,-5.0); | |
5537 | - rotMat2ndDerivatives[py][px][XAxis][YAxis] = -1.0*temp1*x*z+temp2*x*pow(y,2.0)*z; | |
5555 | + rotMat2ndDerivatives[py][py][XAxis][YAxis] = -1.0*y/(r*r*r) + 3.0*x*x*y/(r*r*r*r*r); | |
5556 | + rotMat2ndDerivatives[py][pz][XAxis][YAxis] = -1.0*x/(R*R*R) + 3.0*x*y*y/(R*R*R*R*R); | |
5557 | + rotMat2ndDerivatives[py][px][XAxis][YAxis] = -1.0*temp1*x*z+temp2*x*y*y*z; | |
5538 | 5558 | |
5539 | 5559 | rotMat2ndDerivatives[pz][py][XAxis][YAxis] = 0.0; |
5540 | - rotMat2ndDerivatives[pz][pz][XAxis][YAxis] = 3.0*x*y*z*pow(R,-5.0); | |
5541 | - rotMat2ndDerivatives[pz][px][XAxis][YAxis] = temp1*x*y + x*y*pow(r,-1.0)*pow(R,-3.0) - 3.0*x*y*r*pow(R,-5.0); | |
5560 | + rotMat2ndDerivatives[pz][pz][XAxis][YAxis] = 3.0*x*y*z/(R*R*R*R*R); | |
5561 | + rotMat2ndDerivatives[pz][px][XAxis][YAxis] = temp1*x*y + x*y/(r*R*R*R) - 3.0*x*y*r/(R*R*R*R*R); | |
5542 | 5562 | |
5543 | - rotMat2ndDerivatives[px][py][XAxis][YAxis] = x*pow(r,-3.0) - 3.0*x*pow(y,2.0)*pow(r,-5.0); | |
5563 | + rotMat2ndDerivatives[px][py][XAxis][YAxis] = x/(r*r*r) - 3.0*x*y*y/(r*r*r*r*r); | |
5544 | 5564 | rotMat2ndDerivatives[px][pz][XAxis][YAxis] = rotMat2ndDerivatives[py][pz][XAxis][XAxis]; |
5545 | 5565 | rotMat2ndDerivatives[px][px][XAxis][YAxis] = rotMat2ndDerivatives[py][px][XAxis][XAxis]; |
5546 | 5566 |
@@ -5553,16 +5573,16 @@ void Cndo2::CalcRotatingMatrix2ndDerivatives(double**** rotMat2ndDerivatives, | ||
5553 | 5573 | // for p-function, xz-derivatives |
5554 | 5574 | rotMat2ndDerivatives[py][py][XAxis][ZAxis] = 0.0; |
5555 | 5575 | rotMat2ndDerivatives[py][pz][XAxis][ZAxis] = rotMat2ndDerivatives[pz][pz][XAxis][YAxis]; |
5556 | - rotMat2ndDerivatives[py][px][XAxis][ZAxis] = -1.0*temp1*x*y +temp3*x*y*pow(z,2.0); | |
5576 | + rotMat2ndDerivatives[py][px][XAxis][ZAxis] = -1.0*temp1*x*y +temp3*x*y*z*z; | |
5557 | 5577 | |
5558 | 5578 | rotMat2ndDerivatives[pz][py][XAxis][ZAxis] = 0.0; |
5559 | - rotMat2ndDerivatives[pz][pz][XAxis][ZAxis] = -1.0*x*pow(R,-3.0) + 3.0*x*pow(z,2.0)*pow(R,-5.0); | |
5560 | - rotMat2ndDerivatives[pz][px][XAxis][ZAxis] = x*z*pow(r,-1.0)*pow(R,-3.0) - 3.0*x*z*r*pow(R,-5.0); | |
5579 | + rotMat2ndDerivatives[pz][pz][XAxis][ZAxis] = -1.0*x/(R*R*R) + 3.0*x*z*z/(R*R*R*R*R); | |
5580 | + rotMat2ndDerivatives[pz][px][XAxis][ZAxis] = x*z/(r*R*R*R) - 3.0*x*z*r/(R*R*R*R*R); | |
5561 | 5581 | |
5562 | 5582 | rotMat2ndDerivatives[px][py][XAxis][ZAxis] = 0.0; |
5563 | 5583 | rotMat2ndDerivatives[px][pz][XAxis][ZAxis] = rotMat2ndDerivatives[pz][pz][XAxis][XAxis]; |
5564 | - rotMat2ndDerivatives[px][px][XAxis][ZAxis] = pow(r*R,-1.0) - pow(z,2.0)*pow(r,-1.0)*pow(R,-3.0) | |
5565 | - -1.0*temp1*pow(x,2.0)+temp3*pow(x*z,2.0); | |
5584 | + rotMat2ndDerivatives[px][px][XAxis][ZAxis] = 1.0/(r*R) - z*z/(r*R*R*R) | |
5585 | + -1.0*temp1*x*x+temp3*x*x*z*z; | |
5566 | 5586 | |
5567 | 5587 | |
5568 | 5588 | // for p-function, zx-derivatives |
@@ -5573,32 +5593,32 @@ void Cndo2::CalcRotatingMatrix2ndDerivatives(double**** rotMat2ndDerivatives, | ||
5573 | 5593 | } |
5574 | 5594 | |
5575 | 5595 | // for p-function, yy-derivatives |
5576 | - rotMat2ndDerivatives[py][py][YAxis][YAxis] = -1.0*x*pow(r,-3.0) + 3.0*x*pow(y,2.0)*pow(r,-5.0); | |
5577 | - rotMat2ndDerivatives[py][pz][YAxis][YAxis] = -3.0*y*pow(R,-3.0) + 3.0*pow(y,3.0)*pow(R,-5.0); | |
5578 | - rotMat2ndDerivatives[py][px][YAxis][YAxis] = -3.0*temp1*y*z+temp2*pow(y,3.0)*z; | |
5596 | + rotMat2ndDerivatives[py][py][YAxis][YAxis] = -1.0*x/(r*r*r) + 3.0*x*y*y/(r*r*r*r*r); | |
5597 | + rotMat2ndDerivatives[py][pz][YAxis][YAxis] = -3.0*y/(R*R*R) + 3.0*y*y*y/(R*R*R*R*R); | |
5598 | + rotMat2ndDerivatives[py][px][YAxis][YAxis] = -3.0*temp1*y*z+temp2*y*y*y*z; | |
5579 | 5599 | |
5580 | 5600 | rotMat2ndDerivatives[pz][py][YAxis][YAxis] = 0.0; |
5581 | - rotMat2ndDerivatives[pz][pz][YAxis][YAxis] = -1.0*z*pow(R,-3.0) + 3.0*pow(y,2.0)*z*pow(R,-5.0); | |
5582 | - rotMat2ndDerivatives[pz][px][YAxis][YAxis] = -1.0*pow(r*R,-1.0) + temp1*pow(y,2.0) | |
5583 | - +r*pow(R,-3.0) - 3.0*pow(y,2.0)*r*pow(R,-5.0) + pow(y,2.0)*pow(r,-1.0)*pow(R,-3.0); | |
5601 | + rotMat2ndDerivatives[pz][pz][YAxis][YAxis] = -1.0*z/(R*R*R) + 3.0*y*y*z/(R*R*R*R*R); | |
5602 | + rotMat2ndDerivatives[pz][px][YAxis][YAxis] = -1.0/(r*R) + temp1*y*y | |
5603 | + +r/(R*R*R) - 3.0*y*y*r/(R*R*R*R*R) + y*y/(r*R*R*R); | |
5584 | 5604 | |
5585 | - rotMat2ndDerivatives[px][py][YAxis][YAxis] = 3.0*y*pow(r,-3.0) - 3.0*pow(y,3.0)*pow(r,-5.0); | |
5605 | + rotMat2ndDerivatives[px][py][YAxis][YAxis] = 3.0*y/(r*r*r) - 3.0*y*y*y/(r*r*r*r*r); | |
5586 | 5606 | rotMat2ndDerivatives[px][pz][YAxis][YAxis] = rotMat2ndDerivatives[py][pz][XAxis][YAxis]; |
5587 | - rotMat2ndDerivatives[px][px][YAxis][YAxis] = -1.0*temp1*x*z+temp2*x*pow(y,2.0)*z; | |
5607 | + rotMat2ndDerivatives[px][px][YAxis][YAxis] = -1.0*temp1*x*z+temp2*x*y*y*z; | |
5588 | 5608 | |
5589 | 5609 | // for p-function, yz-derivatives |
5590 | 5610 | rotMat2ndDerivatives[py][py][YAxis][ZAxis] = 0.0; |
5591 | 5611 | rotMat2ndDerivatives[py][pz][YAxis][ZAxis] = rotMat2ndDerivatives[pz][pz][YAxis][YAxis]; |
5592 | - rotMat2ndDerivatives[py][px][YAxis][ZAxis] = pow(r*R,-1.0) - pow(z,2.0)*pow(r,-1.0)*pow(R,-3.0) | |
5593 | - -1.0*temp1*pow(y,2.0)+temp3*pow(y*z,2.0); | |
5612 | + rotMat2ndDerivatives[py][px][YAxis][ZAxis] = 1.0/(r*R) - z*z/(r*R*R*R) | |
5613 | + -1.0*temp1*y*y+temp3*y*y*z*z; | |
5594 | 5614 | |
5595 | 5615 | rotMat2ndDerivatives[pz][py][YAxis][ZAxis] = 0.0; |
5596 | - rotMat2ndDerivatives[pz][pz][YAxis][ZAxis] = -1.0*y*pow(R,-3.0) + 3.0*y*pow(z,2.0)*pow(R,-5.0); | |
5597 | - rotMat2ndDerivatives[pz][px][YAxis][ZAxis] = y*z*pow(r,-1.0)*pow(R,-3.0) - 3.0*y*z*r*pow(R,-5.0); | |
5616 | + rotMat2ndDerivatives[pz][pz][YAxis][ZAxis] = -1.0*y/(R*R*R) + 3.0*y*z*z/(R*R*R*R*R); | |
5617 | + rotMat2ndDerivatives[pz][px][YAxis][ZAxis] = y*z/(r*R*R*R) - 3.0*y*z*r/(R*R*R*R*R); | |
5598 | 5618 | |
5599 | 5619 | rotMat2ndDerivatives[px][py][YAxis][ZAxis] = 0.0; |
5600 | 5620 | rotMat2ndDerivatives[px][pz][YAxis][ZAxis] = rotMat2ndDerivatives[pz][pz][XAxis][YAxis]; |
5601 | - rotMat2ndDerivatives[px][px][YAxis][ZAxis] = -1.0*temp1*x*y+temp3*x*y*pow(z,2.0); | |
5621 | + rotMat2ndDerivatives[px][px][YAxis][ZAxis] = -1.0*temp1*x*y+temp3*x*y*z*z; | |
5602 | 5622 | |
5603 | 5623 | |
5604 | 5624 | // for p-function, zy-derivatives |
@@ -5611,15 +5631,15 @@ void Cndo2::CalcRotatingMatrix2ndDerivatives(double**** rotMat2ndDerivatives, | ||
5611 | 5631 | // for p-function, zz-derivatives |
5612 | 5632 | rotMat2ndDerivatives[py][py][ZAxis][ZAxis] = 0.0; |
5613 | 5633 | rotMat2ndDerivatives[py][pz][ZAxis][ZAxis] = rotMat2ndDerivatives[pz][pz][YAxis][ZAxis]; |
5614 | - rotMat2ndDerivatives[py][px][ZAxis][ZAxis] = -3.0*y*z*pow(r,-1.0)*pow(R,-3.0) + 3.0*y*pow(z,3.0)*pow(r,-1.0)*pow(R,-5.0); | |
5634 | + rotMat2ndDerivatives[py][px][ZAxis][ZAxis] = -3.0*y*z/(r*R*R*R) + 3.0*y*z*z*z/(r*R*R*R*R*R); | |
5615 | 5635 | |
5616 | 5636 | rotMat2ndDerivatives[pz][py][ZAxis][ZAxis] = 0.0; |
5617 | - rotMat2ndDerivatives[pz][pz][ZAxis][ZAxis] = -3.0*z*pow(R,-3.0) + 3.0*pow(z,3.0)*pow(R,-5.0); | |
5618 | - rotMat2ndDerivatives[pz][px][ZAxis][ZAxis] = -3.0*pow(z,2.0)*r*pow(R,-5.0) + r*pow(R,-3.0); | |
5637 | + rotMat2ndDerivatives[pz][pz][ZAxis][ZAxis] = -3.0*z/(R*R*R) + 3.0*z*z*z/(R*R*R*R*R); | |
5638 | + rotMat2ndDerivatives[pz][px][ZAxis][ZAxis] = -3.0*z*z*r/(R*R*R*R*R) + r/(R*R*R); | |
5619 | 5639 | |
5620 | 5640 | rotMat2ndDerivatives[px][py][ZAxis][ZAxis] = 0.0; |
5621 | 5641 | rotMat2ndDerivatives[px][pz][ZAxis][ZAxis] = rotMat2ndDerivatives[pz][pz][XAxis][ZAxis]; |
5622 | - rotMat2ndDerivatives[px][px][ZAxis][ZAxis] = -3.0*x*z*pow(r,-1.0)*pow(R,-3.0) + 3.0*x*pow(z,3.0)*pow(r,-1.0)*pow(R,-5.0); | |
5642 | + rotMat2ndDerivatives[px][px][ZAxis][ZAxis] = -3.0*x*z/(r*R*R*R) + 3.0*x*z*z*z/(r*R*R*R*R*R); | |
5623 | 5643 | |
5624 | 5644 | // for d-function |
5625 | 5645 | // ToDo: Second derivative of rotating matrix for d-orbital... |
@@ -6275,7 +6295,8 @@ double Cndo2::GetAuxiliaryD(int la, int lb, int m) const{ | ||
6275 | 6295 | throw MolDSException(ss.str()); |
6276 | 6296 | } |
6277 | 6297 | |
6278 | - double pre = pow(Factorial(m+1)/8.0, 2.0); | |
6298 | + double tmp = Factorial(m+1)/8.0; | |
6299 | + double pre = tmp*tmp; | |
6279 | 6300 | double termA = ( (2.0*la+1.0)*Factorial(la-m) ) / ( 2.0*Factorial(la+m) ); |
6280 | 6301 | double termB = ( (2.0*lb+1.0)*Factorial(lb-m) ) / ( 2.0*Factorial(lb+m) ); |
6281 | 6302 | value = pre*sqrt(termA)*sqrt(termB); |
@@ -226,12 +226,12 @@ double Mndo::GetAuxiliaryDiatomCoreRepulsionEnergy2ndDerivative(const Atom& atom | ||
226 | 226 | double pre1=0.0; |
227 | 227 | double pre2=0.0; |
228 | 228 | if(axisA1 == axisA2){ |
229 | - pre1 = 1.0/distanceAB - pow(dCartesian1,2.0)/pow(distanceAB,3.0); | |
230 | - pre2 = pow(dCartesian1/distanceAB,2.0); | |
229 | + pre1 = 1.0/distanceAB - dCartesian1*dCartesian1/(distanceAB*distanceAB*distanceAB); | |
230 | + pre2 = (dCartesian1*dCartesian1)/(distanceAB*distanceAB); | |
231 | 231 | } |
232 | 232 | else{ |
233 | - pre1 = -dCartesian1*dCartesian2/pow(distanceAB,3.0); | |
234 | - pre2 = dCartesian1*dCartesian2/pow(distanceAB,2.0); | |
233 | + pre1 = -dCartesian1*dCartesian2/(distanceAB*distanceAB*distanceAB); | |
234 | + pre2 = dCartesian1*dCartesian2/(distanceAB*distanceAB); | |
235 | 235 | } |
236 | 236 | |
237 | 237 | double ang2AU = Parameters::GetInstance()->GetAngstrom2AU(); |
@@ -6127,50 +6127,51 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction(const Atom& atomA, | ||
6127 | 6127 | |
6128 | 6128 | // Eq. (52) in [DT_1977] |
6129 | 6129 | if(multipoleA == sQ && multipoleB == sQ){ |
6130 | - value = pow(pow(rAB,2.0) + pow(a,2.0), -0.5); | |
6130 | + value = pow((rAB*rAB) + (a*a), -0.5); | |
6131 | 6131 | } |
6132 | 6132 | // Eq. (53) in [DT_1977] |
6133 | 6133 | else if(multipoleA == sQ && multipoleB == muz){ |
6134 | - double temp1 = pow(rAB+DB,2.0) + pow(a,2.0); | |
6135 | - double temp2 = pow(rAB-DB,2.0) + pow(a,2.0); | |
6134 | + double temp1 = ((rAB+DB)*(rAB+DB)) + (a*a); | |
6135 | + double temp2 = ((rAB-DB)*(rAB-DB)) + (a*a); | |
6136 | 6136 | value = pow(temp1,-0.5)/2.0 - pow(temp2,-0.5)/2.0; |
6137 | 6137 | } |
6138 | 6138 | else if(multipoleA == muz && multipoleB == sQ){ |
6139 | 6139 | value = this->GetSemiEmpiricalMultipoleInteraction(atomB, atomA, multipoleB, multipoleA, rAB); |
6140 | - value *= pow(-1.0,1.0); | |
6140 | + //value *= pow(-1.0,1.0); | |
6141 | + value *= -1.0; | |
6141 | 6142 | } |
6142 | 6143 | // Eq. (54) in [DT_1977] |
6143 | 6144 | else if(multipoleA == sQ && multipoleB == Qxx){ |
6144 | - double temp1 = pow(rAB,2.0) + pow(2.0*DB,2.0) + pow(a,2.0); | |
6145 | - double temp2 = pow(rAB,2.0) + pow(a,2.0); | |
6145 | + double temp1 = (rAB*rAB) + (4.0*DB*DB) + (a*a); | |
6146 | + double temp2 = (rAB*rAB) + (a*a); | |
6146 | 6147 | value = pow(temp1,-0.5)/2.0 - pow(temp2,-0.5)/2.0; |
6147 | 6148 | } |
6148 | 6149 | else if(multipoleA == Qxx && multipoleB == sQ){ |
6149 | 6150 | value = this->GetSemiEmpiricalMultipoleInteraction(atomB, atomA, multipoleB, multipoleA, rAB); |
6150 | - value *= pow(-1.0,2.0); | |
6151 | + //value *= pow(-1.0,2.0); | |
6151 | 6152 | } |
6152 | 6153 | else if(multipoleA == sQ && multipoleB == Qyy){ |
6153 | 6154 | value = this->GetSemiEmpiricalMultipoleInteraction(atomA, atomB, multipoleA, Qxx, rAB); |
6154 | 6155 | } |
6155 | 6156 | else if(multipoleA == Qyy && multipoleB == sQ){ |
6156 | 6157 | value = this->GetSemiEmpiricalMultipoleInteraction(atomB, atomA, multipoleB, multipoleA, rAB); |
6157 | - value *= pow(-1.0,2.0); | |
6158 | + //value *= pow(-1.0,2.0); | |
6158 | 6159 | } |
6159 | 6160 | // Eq. (55) in [DT_1977] |
6160 | 6161 | else if(multipoleA == sQ && multipoleB == Qzz){ |
6161 | - double temp1 = pow(rAB+2.0*DB,2.0) + pow(a,2.0); | |
6162 | - double temp2 = pow(rAB,2.0) + pow(a,2.0); | |
6163 | - double temp3 = pow(rAB-2.0*DB,2.0) + pow(a,2.0); | |
6162 | + double temp1 = ((rAB+2.0*DB)*(rAB+2.0*DB)) + (a*a); | |
6163 | + double temp2 = (rAB*rAB) + (a*a); | |
6164 | + double temp3 = ((rAB-2.0*DB)*(rAB-2.0*DB)) + (a*a); | |
6164 | 6165 | value = pow(temp1,-0.5)/4.0 - pow(temp2,-0.5)/2.0 + pow(temp3,-0.5)/4.0; |
6165 | 6166 | } |
6166 | 6167 | else if(multipoleA == Qzz && multipoleB == sQ){ |
6167 | 6168 | value = this->GetSemiEmpiricalMultipoleInteraction(atomB, atomA, multipoleB, multipoleA, rAB); |
6168 | - value *= pow(-1.0,2.0); | |
6169 | + //value *= pow(-1.0,2.0); | |
6169 | 6170 | } |
6170 | 6171 | // Eq. (56) in [DT_1977] |
6171 | 6172 | else if(multipoleA == mux && multipoleB == mux){ |
6172 | - double temp1 = pow(rAB,2.0) + pow(DA-DB,2.0) + pow(a,2.0); | |
6173 | - double temp2 = pow(rAB,2.0) + pow(DA+DB,2.0) + pow(a,2.0); | |
6173 | + double temp1 = (rAB*rAB) + ((DA-DB)*(DA-DB)) + (a*a); | |
6174 | + double temp2 = (rAB*rAB) + ((DA+DB)*(DA+DB)) + (a*a); | |
6174 | 6175 | value = pow(temp1,-0.5)/2.0 - pow(temp2,-0.5)/2.0; |
6175 | 6176 | } |
6176 | 6177 | else if(multipoleA == muy && multipoleB == muy){ |
@@ -6178,76 +6179,81 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction(const Atom& atomA, | ||
6178 | 6179 | } |
6179 | 6180 | // Eq. (57) in [DT_1977] |
6180 | 6181 | else if(multipoleA == muz && multipoleB == muz){ |
6181 | - double temp1 = pow(rAB+DA-DB,2.0) + pow(a,2.0); | |
6182 | - double temp2 = pow(rAB+DA+DB,2.0) + pow(a,2.0); | |
6183 | - double temp3 = pow(rAB-DA-DB,2.0) + pow(a,2.0); | |
6184 | - double temp4 = pow(rAB-DA+DB,2.0) + pow(a,2.0); | |
6182 | + double temp1 = ((rAB+DA-DB)*(rAB+DA-DB)) + (a*a); | |
6183 | + double temp2 = ((rAB+DA+DB)*(rAB+DA+DB)) + (a*a); | |
6184 | + double temp3 = ((rAB-DA-DB)*(rAB-DA-DB)) + (a*a); | |
6185 | + double temp4 = ((rAB-DA+DB)*(rAB-DA+DB)) + (a*a); | |
6185 | 6186 | value = pow(temp1,-0.5)/4.0 - pow(temp2,-0.5)/4.0 |
6186 | 6187 | -pow(temp3,-0.5)/4.0 + pow(temp4,-0.5)/4.0; |
6187 | 6188 | } |
6188 | 6189 | // Eq. (58) in [DT_1977] |
6189 | 6190 | else if(multipoleA == mux && multipoleB == Qxz){ |
6190 | - double temp1 = pow(rAB-DB,2.0) + pow(DA-DB,2.0) + pow(a,2.0); | |
6191 | - double temp2 = pow(rAB-DB,2.0) + pow(DA+DB,2.0) + pow(a,2.0); | |
6192 | - double temp3 = pow(rAB+DB,2.0) + pow(DA-DB,2.0) + pow(a,2.0); | |
6193 | - double temp4 = pow(rAB+DB,2.0) + pow(DA+DB,2.0) + pow(a,2.0); | |
6191 | + double temp1 = ((rAB-DB)*(rAB-DB)) + ((DA-DB)*(DA-DB)) + (a*a); | |
6192 | + double temp2 = ((rAB-DB)*(rAB-DB)) + ((DA+DB)*(DA+DB)) + (a*a); | |
6193 | + double temp3 = ((rAB+DB)*(rAB+DB)) + ((DA-DB)*(DA-DB)) + (a*a); | |
6194 | + double temp4 = ((rAB+DB)*(rAB+DB)) + ((DA+DB)*(DA+DB)) + (a*a); | |
6194 | 6195 | value =-pow(temp1,-0.5)/4.0 + pow(temp2,-0.5)/4.0 |
6195 | 6196 | +pow(temp3,-0.5)/4.0 - pow(temp4,-0.5)/4.0; |
6196 | 6197 | } |
6197 | 6198 | else if(multipoleA == Qxz && multipoleB == mux){ |
6198 | 6199 | value = this->GetSemiEmpiricalMultipoleInteraction(atomB, atomA, multipoleB, multipoleA, rAB); |
6199 | - value *= pow(-1.0,3.0); | |
6200 | + //value *= pow(-1.0,3.0); | |
6201 | + value *= -1.0; | |
6200 | 6202 | } |
6201 | 6203 | else if(multipoleA == muy && multipoleB == Qyz){ |
6202 | 6204 | value = this->GetSemiEmpiricalMultipoleInteraction(atomA, atomB, mux, Qxz, rAB); |
6203 | 6205 | } |
6204 | 6206 | else if(multipoleA == Qyz && multipoleB == muy){ |
6205 | 6207 | value = this->GetSemiEmpiricalMultipoleInteraction(atomB, atomA, multipoleB, multipoleA, rAB); |
6206 | - value *= pow(-1.0,3.0); | |
6208 | + //value *= pow(-1.0,3.0); | |
6209 | + value *= -1.0; | |
6207 | 6210 | } |
6208 | 6211 | // Eq. (59) in [DT_1977] |
6209 | 6212 | else if(multipoleA == muz && multipoleB == Qxx){ |
6210 | - double temp1 = pow(rAB+DA,2.0) + pow(2.0*DB,2.0) + pow(a,2.0); | |
6211 | - double temp2 = pow(rAB-DA,2.0) + pow(2.0*DB,2.0) + pow(a,2.0); | |
6212 | - double temp3 = pow(rAB+DA,2.0) + pow(a,2.0); | |
6213 | - double temp4 = pow(rAB-DA,2.0) + pow(a,2.0); | |
6213 | + double temp1 = ((rAB+DA)*(rAB+DA)) + (4.0*DB*DB) + (a*a); | |
6214 | + double temp2 = ((rAB-DA)*(rAB-DA)) + (4.0*DB*DB) + (a*a); | |
6215 | + double temp3 = ((rAB+DA)*(rAB+DA)) + (a*a); | |
6216 | + double temp4 = ((rAB-DA)*(rAB-DA)) + (a*a); | |
6214 | 6217 | value =-pow(temp1,-0.5)/4.0 + pow(temp2,-0.5)/4.0 |
6215 | 6218 | +pow(temp3,-0.5)/4.0 - pow(temp4,-0.5)/4.0; |
6216 | 6219 | } |
6217 | 6220 | else if(multipoleA == Qxx && multipoleB == muz){ |
6218 | 6221 | value = this->GetSemiEmpiricalMultipoleInteraction(atomB, atomA, multipoleB, multipoleA, rAB); |
6219 | - value *= pow(-1.0,3.0); | |
6222 | + //value *= pow(-1.0,3.0); | |
6223 | + value *= -1.0; | |
6220 | 6224 | } |
6221 | 6225 | else if(multipoleA == muz && multipoleB == Qyy){ |
6222 | 6226 | value = this->GetSemiEmpiricalMultipoleInteraction(atomA, atomB, muz, Qxx, rAB); |
6223 | 6227 | } |
6224 | 6228 | else if(multipoleA == Qyy && multipoleB == muz){ |
6225 | 6229 | value = this->GetSemiEmpiricalMultipoleInteraction(atomB, atomA, multipoleB, multipoleA, rAB); |
6226 | - value *= pow(-1.0,3.0); | |
6230 | + //value *= pow(-1.0,3.0); | |
6231 | + value *= -1.0; | |
6227 | 6232 | } |
6228 | 6233 | // Eq. (60) in [DT_1977] |
6229 | 6234 | else if(multipoleA == muz && multipoleB == Qzz){ |
6230 | - double temp1 = pow(rAB+DA-2.0*DB,2.0) + pow(a,2.0); | |
6231 | - double temp2 = pow(rAB-DA-2.0*DB,2.0) + pow(a,2.0); | |
6232 | - double temp3 = pow(rAB+DA+2.0*DB,2.0) + pow(a,2.0); | |
6233 | - double temp4 = pow(rAB-DA+2.0*DB,2.0) + pow(a,2.0); | |
6234 | - double temp5 = pow(rAB+DA,2.0) + pow(a,2.0); | |
6235 | - double temp6 = pow(rAB-DA,2.0) + pow(a,2.0); | |
6235 | + double temp1 = ((rAB+DA-2.0*DB)*(rAB+DA-2.0*DB)) + (a*a); | |
6236 | + double temp2 = ((rAB-DA-2.0*DB)*(rAB-DA-2.0*DB)) + (a*a); | |
6237 | + double temp3 = ((rAB+DA+2.0*DB)*(rAB+DA+2.0*DB)) + (a*a); | |
6238 | + double temp4 = ((rAB-DA+2.0*DB)*(rAB-DA+2.0*DB)) + (a*a); | |
6239 | + double temp5 = ((rAB+DA)*(rAB+DA)) + (a*a); | |
6240 | + double temp6 = ((rAB-DA)*(rAB-DA)) + (a*a); | |
6236 | 6241 | value =-pow(temp1,-0.5)/8.0 + pow(temp2,-0.5)/8.0 |
6237 | 6242 | -pow(temp3,-0.5)/8.0 + pow(temp4,-0.5)/8.0 |
6238 | 6243 | +pow(temp5,-0.5)/4.0 - pow(temp6,-0.5)/4.0; |
6239 | 6244 | } |
6240 | 6245 | else if(multipoleA == Qzz && multipoleB == muz){ |
6241 | 6246 | value = this->GetSemiEmpiricalMultipoleInteraction(atomB, atomA, multipoleB, multipoleA, rAB); |
6242 | - value *= pow(-1.0,3.0); | |
6247 | + //value *= pow(-1.0,3.0); | |
6248 | + value *= -1.0; | |
6243 | 6249 | } |
6244 | 6250 | // Eq. (61) in [DT_1977] |
6245 | 6251 | else if(multipoleA == Qxx && multipoleB == Qxx){ |
6246 | - double temp1 = pow(rAB,2.0) + 4.0*pow(DA-DB,2.0) + pow(a,2.0); | |
6247 | - double temp2 = pow(rAB,2.0) + 4.0*pow(DA+DB,2.0) + pow(a,2.0); | |
6248 | - double temp3 = pow(rAB,2.0) + pow(2.0*DA,2.0) + pow(a,2.0); | |
6249 | - double temp4 = pow(rAB,2.0) + pow(2.0*DB,2.0) + pow(a,2.0); | |
6250 | - double temp5 = pow(rAB,2.0) + pow(a,2.0); | |
6252 | + double temp1 = (rAB*rAB) + 4.0*((DA-DB)*(DA-DB)) + (a*a); | |
6253 | + double temp2 = (rAB*rAB) + 4.0*((DA+DB)*(DA+DB)) + (a*a); | |
6254 | + double temp3 = (rAB*rAB) + (4.0*DA*DA) + (a*a); | |
6255 | + double temp4 = (rAB*rAB) + (4.0*DB*DB) + (a*a); | |
6256 | + double temp5 = (rAB*rAB) + (a*a); | |
6251 | 6257 | value = pow(temp1,-0.5)/8.0 + pow(temp2,-0.5)/8.0 |
6252 | 6258 | -pow(temp3,-0.5)/4.0 - pow(temp4,-0.5)/4.0 |
6253 | 6259 | +pow(temp5,-0.5)/4.0; |
@@ -6257,51 +6263,51 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction(const Atom& atomA, | ||
6257 | 6263 | } |
6258 | 6264 | // Eq. (62) in [DT_1977] |
6259 | 6265 | else if(multipoleA == Qxx && multipoleB == Qyy){ |
6260 | - double temp1 = pow(rAB,2.0) + pow(2.0*DA,2.0) + pow(2.0*DB,2.0)+ pow(a,2.0); | |
6261 | - double temp2 = pow(rAB,2.0) + pow(2.0*DA,2.0) + pow(a,2.0); | |
6262 | - double temp3 = pow(rAB,2.0) + pow(2.0*DB,2.0) + pow(a,2.0); | |
6263 | - double temp4 = pow(rAB,2.0) + pow(a,2.0); | |
6266 | + double temp1 = (rAB*rAB) + (4.0*DA*DA) + (4.0*DB*DB)+ (a*a); | |
6267 | + double temp2 = (rAB*rAB) + (4.0*DA*DA) + (a*a); | |
6268 | + double temp3 = (rAB*rAB) + (4.0*DB*DB) + (a*a); | |
6269 | + double temp4 = (rAB*rAB) + (a*a); | |
6264 | 6270 | value = pow(temp1,-0.5)/4.0 - pow(temp2,-0.5)/4.0 |
6265 | 6271 | -pow(temp3,-0.5)/4.0 + pow(temp4,-0.5)/4.0; |
6266 | 6272 | } |
6267 | 6273 | else if(multipoleA == Qyy && multipoleB == Qxx){ |
6268 | 6274 | value = this->GetSemiEmpiricalMultipoleInteraction(atomB, atomA, multipoleB, multipoleA, rAB); |
6269 | - value *= pow(-1.0,4.0); | |
6275 | + //value *= pow(-1.0,4.0); | |
6270 | 6276 | } |
6271 | 6277 | // Eq. (63) in [DT_1977] |
6272 | 6278 | else if(multipoleA == Qxx && multipoleB == Qzz){ |
6273 | - double temp1 = pow(rAB-2.0*DB,2.0) + pow(2.0*DA,2.0) + pow(a,2.0); | |
6274 | - double temp2 = pow(rAB+2.0*DB,2.0) + pow(2.0*DA,2.0) + pow(a,2.0); | |
6275 | - double temp3 = pow(rAB-2.0*DB,2.0) + pow(a,2.0); | |
6276 | - double temp4 = pow(rAB+2.0*DB,2.0) + pow(a,2.0); | |
6277 | - double temp5 = pow(rAB,2.0) + pow(2.0*DA,2.0) + pow(a,2.0); | |
6278 | - double temp6 = pow(rAB,2.0) + pow(a,2.0); | |
6279 | + double temp1 = ((rAB-2.0*DB)*(rAB-2.0*DB)) + (4.0*DA*DA) + (a*a); | |
6280 | + double temp2 = ((rAB+2.0*DB)*(rAB+2.0*DB)) + (4.0*DA*DA) + (a*a); | |
6281 | + double temp3 = ((rAB-2.0*DB)*(rAB-2.0*DB)) + (a*a); | |
6282 | + double temp4 = ((rAB+2.0*DB)*(rAB+2.0*DB)) + (a*a); | |
6283 | + double temp5 = (rAB*rAB) + (4.0*DA*DA) + (a*a); | |
6284 | + double temp6 = (rAB*rAB) + (a*a); | |
6279 | 6285 | value = pow(temp1,-0.5)/8.0 + pow(temp2,-0.5)/8.0 |
6280 | 6286 | -pow(temp3,-0.5)/8.0 - pow(temp4,-0.5)/8.0 |
6281 | 6287 | -pow(temp5,-0.5)/4.0 + pow(temp6,-0.5)/4.0; |
6282 | 6288 | } |
6283 | 6289 | else if(multipoleA == Qzz && multipoleB == Qxx){ |
6284 | 6290 | value = this->GetSemiEmpiricalMultipoleInteraction(atomB, atomA, multipoleB, multipoleA, rAB); |
6285 | - value *= pow(-1.0,4.0); | |
6291 | + //value *= pow(-1.0,4.0); | |
6286 | 6292 | } |
6287 | 6293 | else if(multipoleA == Qyy && multipoleB == Qzz){ |
6288 | 6294 | value = this->GetSemiEmpiricalMultipoleInteraction(atomA, atomB, Qxx, multipoleB, rAB); |
6289 | 6295 | } |
6290 | 6296 | else if(multipoleA == Qzz && multipoleB == Qyy){ |
6291 | 6297 | value = this->GetSemiEmpiricalMultipoleInteraction(atomB, atomA, multipoleB, multipoleA, rAB); |
6292 | - value *= pow(-1.0,4.0); | |
6298 | + //value *= pow(-1.0,4.0); | |
6293 | 6299 | } |
6294 | 6300 | // Eq. (64) in [DT_1977] |
6295 | 6301 | else if(multipoleA == Qzz && multipoleB == Qzz){ |
6296 | - double temp1 = pow(rAB+2.0*DA-2.0*DB,2.0) + pow(a,2.0); | |
6297 | - double temp2 = pow(rAB+2.0*DA+2.0*DB,2.0) + pow(a,2.0); | |
6298 | - double temp3 = pow(rAB-2.0*DA-2.0*DB,2.0) + pow(a,2.0); | |
6299 | - double temp4 = pow(rAB-2.0*DA+2.0*DB,2.0) + pow(a,2.0); | |
6300 | - double temp5 = pow(rAB+2.0*DA,2.0) + pow(a,2.0); | |
6301 | - double temp6 = pow(rAB-2.0*DA,2.0) + pow(a,2.0); | |
6302 | - double temp7 = pow(rAB+2.0*DB,2.0) + pow(a,2.0); | |
6303 | - double temp8 = pow(rAB-2.0*DB,2.0) + pow(a,2.0); | |
6304 | - double temp9 = pow(rAB,2.0) + pow(a,2.0); | |
6302 | + double temp1 = ((rAB+2.0*DA-2.0*DB)*(rAB+2.0*DA-2.0*DB)) + (a*a); | |
6303 | + double temp2 = ((rAB+2.0*DA+2.0*DB)*(rAB+2.0*DA+2.0*DB)) + (a*a); | |
6304 | + double temp3 = ((rAB-2.0*DA-2.0*DB)*(rAB-2.0*DA-2.0*DB)) + (a*a); | |
6305 | + double temp4 = ((rAB-2.0*DA+2.0*DB)*(rAB-2.0*DA+2.0*DB)) + (a*a); | |
6306 | + double temp5 = pow(rAB+2.0*DA,2.0) + (a*a); | |
6307 | + double temp6 = pow(rAB-2.0*DA,2.0) + (a*a); | |
6308 | + double temp7 = ((rAB+2.0*DB)*(rAB+2.0*DB)) + (a*a); | |
6309 | + double temp8 = ((rAB-2.0*DB)*(rAB-2.0*DB)) + (a*a); | |
6310 | + double temp9 = (rAB*rAB) + (a*a); | |
6305 | 6311 | value = pow(temp1,-0.5)/16.0 + pow(temp2,-0.5)/16.0 |
6306 | 6312 | +pow(temp3,-0.5)/16.0 + pow(temp4,-0.5)/16.0 |
6307 | 6313 | -pow(temp5,-0.5)/8.0 - pow(temp6,-0.5)/8.0 |
@@ -6310,14 +6316,14 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction(const Atom& atomA, | ||
6310 | 6316 | } |
6311 | 6317 | // Eq. (65) in [DT_1977] |
6312 | 6318 | else if(multipoleA == Qxz && multipoleB == Qxz){ |
6313 | - double temp1 = pow(rAB+DA-DB,2.0) + pow(DA-DB,2.0) + pow(a,2.0); | |
6314 | - double temp2 = pow(rAB+DA-DB,2.0) + pow(DA+DB,2.0) + pow(a,2.0); | |
6315 | - double temp3 = pow(rAB+DA+DB,2.0) + pow(DA-DB,2.0) + pow(a,2.0); | |
6316 | - double temp4 = pow(rAB+DA+DB,2.0) + pow(DA+DB,2.0) + pow(a,2.0); | |
6317 | - double temp5 = pow(rAB-DA-DB,2.0) + pow(DA-DB,2.0) + pow(a,2.0); | |
6318 | - double temp6 = pow(rAB-DA-DB,2.0) + pow(DA+DB,2.0) + pow(a,2.0); | |
6319 | - double temp7 = pow(rAB-DA+DB,2.0) + pow(DA-DB,2.0) + pow(a,2.0); | |
6320 | - double temp8 = pow(rAB-DA+DB,2.0) + pow(DA+DB,2.0) + pow(a,2.0); | |
6319 | + double temp1 = ((rAB+DA-DB)*(rAB+DA-DB)) + ((DA-DB)*(DA-DB)) + (a*a); | |
6320 | + double temp2 = ((rAB+DA-DB)*(rAB+DA-DB)) + ((DA+DB)*(DA+DB)) + (a*a); | |
6321 | + double temp3 = ((rAB+DA+DB)*(rAB+DA+DB)) + ((DA-DB)*(DA-DB)) + (a*a); | |
6322 | + double temp4 = ((rAB+DA+DB)*(rAB+DA+DB)) + ((DA+DB)*(DA+DB)) + (a*a); | |
6323 | + double temp5 = ((rAB-DA-DB)*(rAB-DA-DB)) + ((DA-DB)*(DA-DB)) + (a*a); | |
6324 | + double temp6 = ((rAB-DA-DB)*(rAB-DA-DB)) + ((DA+DB)*(DA+DB)) + (a*a); | |
6325 | + double temp7 = ((rAB-DA+DB)*(rAB-DA+DB)) + ((DA-DB)*(DA-DB)) + (a*a); | |
6326 | + double temp8 = ((rAB-DA+DB)*(rAB-DA+DB)) + ((DA+DB)*(DA+DB)) + (a*a); | |
6321 | 6327 | value = pow(temp1,-0.5)/8.0 - pow(temp2,-0.5)/8.0 |
6322 | 6328 | -pow(temp3,-0.5)/8.0 + pow(temp4,-0.5)/8.0 |
6323 | 6329 | -pow(temp5,-0.5)/8.0 + pow(temp6,-0.5)/8.0 |
@@ -6328,9 +6334,9 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction(const Atom& atomA, | ||
6328 | 6334 | } |
6329 | 6335 | // Eq. (66) in [DT_1977] |
6330 | 6336 | else if(multipoleA == Qxy && multipoleB == Qxy){ |
6331 | - double temp1 = pow(rAB,2.0) + 2.0*pow(DA-DB,2.0) + pow(a,2.0); | |
6332 | - double temp2 = pow(rAB,2.0) + 2.0*pow(DA+DB,2.0) + pow(a,2.0); | |
6333 | - double temp3 = pow(rAB,2.0) + 2.0*pow(DA,2.0) + 2.0*pow(DB,2.0) + pow(a,2.0); | |
6337 | + double temp1 = (rAB*rAB) + 2.0*((DA-DB)*(DA-DB)) + (a*a); | |
6338 | + double temp2 = (rAB*rAB) + 2.0*((DA+DB)*(DA+DB)) + (a*a); | |
6339 | + double temp3 = (rAB*rAB) + 2.0*(DA*DA) + 2.0*(DB*DB) + (a*a); | |
6334 | 6340 | value = pow(temp1,-0.5)/4.0 + pow(temp2,-0.5)/4.0 |
6335 | 6341 | -pow(temp3,-0.5)/2.0; |
6336 | 6342 | } |
@@ -6361,44 +6367,45 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction1stDerivative(const Atom& atomA | ||
6361 | 6367 | |
6362 | 6368 | // Eq. (52) in [DT_1977] |
6363 | 6369 | if(multipoleA == sQ && multipoleB == sQ){ |
6364 | - value = -1.0*rAB*pow(pow(rAB,2.0) + pow(a,2.0), -1.5); | |
6370 | + value = -1.0*rAB*pow((rAB*rAB) + (a*a), -1.5); | |
6365 | 6371 | } |
6366 | 6372 | // Eq. (53) in [DT_1977] |
6367 | 6373 | else if(multipoleA == sQ && multipoleB == muz){ |
6368 | - double temp1 = pow(rAB+DB,2.0) + pow(a,2.0); | |
6369 | - double temp2 = pow(rAB-DB,2.0) + pow(a,2.0); | |
6374 | + double temp1 = ((rAB+DB)*(rAB+DB)) + (a*a); | |
6375 | + double temp2 = ((rAB-DB)*(rAB-DB)) + (a*a); | |
6370 | 6376 | value = (rAB+DB)*pow(temp1,-1.5)/2.0 |
6371 | 6377 | -(rAB-DB)*pow(temp2,-1.5)/2.0; |
6372 | 6378 | value *= -1.0; |
6373 | 6379 | } |
6374 | 6380 | else if(multipoleA == muz && multipoleB == sQ){ |
6375 | 6381 | value = this->GetSemiEmpiricalMultipoleInteraction1stDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6376 | - value *= pow(-1.0,1.0); | |
6382 | + //value *= pow(-1.0,1.0); | |
6383 | + value *= -1.0; | |
6377 | 6384 | } |
6378 | 6385 | // Eq. (54) in [DT_1977] |
6379 | 6386 | else if(multipoleA == sQ && multipoleB == Qxx){ |
6380 | - double temp1 = pow(rAB,2.0) + pow(2.0*DB,2.0) + pow(a,2.0); | |
6381 | - double temp2 = pow(rAB,2.0) + pow(a,2.0); | |
6387 | + double temp1 = (rAB*rAB) + (4.0*DB*DB) + (a*a); | |
6388 | + double temp2 = (rAB*rAB) + (a*a); | |
6382 | 6389 | value = rAB*pow(temp1,-1.5)/2.0 |
6383 | 6390 | -rAB*pow(temp2,-1.5)/2.0; |
6384 | 6391 | value *= -1.0; |
6385 | 6392 | } |
6386 | 6393 | else if(multipoleA == Qxx && multipoleB == sQ){ |
6387 | 6394 | value = this->GetSemiEmpiricalMultipoleInteraction1stDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6388 | - value *= pow(-1.0,2.0); | |
6395 | + //value *= pow(-1.0,2.0); | |
6389 | 6396 | } |
6390 | 6397 | else if(multipoleA == sQ && multipoleB == Qyy){ |
6391 | 6398 | value = this->GetSemiEmpiricalMultipoleInteraction1stDerivative(atomA, atomB, multipoleA, Qxx, rAB); |
6392 | 6399 | } |
6393 | 6400 | else if(multipoleA == Qyy && multipoleB == sQ){ |
6394 | 6401 | value = this->GetSemiEmpiricalMultipoleInteraction1stDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6395 | - value *= pow(-1.0,2.0); | |
6402 | + //value *= pow(-1.0,2.0); | |
6396 | 6403 | } |
6397 | 6404 | // Eq. (55) in [DT_1977] |
6398 | 6405 | else if(multipoleA == sQ && multipoleB == Qzz){ |
6399 | - double temp1 = pow(rAB+2.0*DB,2.0) + pow(a,2.0); | |
6400 | - double temp2 = pow(rAB,2.0) + pow(a,2.0); | |
6401 | - double temp3 = pow(rAB-2.0*DB,2.0) + pow(a,2.0); | |
6406 | + double temp1 = ((rAB+2.0*DB)*(rAB+2.0*DB)) + (a*a); | |
6407 | + double temp2 = (rAB*rAB) + (a*a); | |
6408 | + double temp3 = ((rAB-2.0*DB)*(rAB-2.0*DB)) + (a*a); | |
6402 | 6409 | value = (rAB+2.0*DB)*pow(temp1,-1.5)/4.0 |
6403 | 6410 | -(rAB)*pow(temp2,-1.5)/2.0 |
6404 | 6411 | +(rAB-2.0*DB)*pow(temp3,-1.5)/4.0; |
@@ -6406,12 +6413,12 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction1stDerivative(const Atom& atomA | ||
6406 | 6413 | } |
6407 | 6414 | else if(multipoleA == Qzz && multipoleB == sQ){ |
6408 | 6415 | value = this->GetSemiEmpiricalMultipoleInteraction1stDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6409 | - value *= pow(-1.0,2.0); | |
6416 | + //value *= pow(-1.0,2.0); | |
6410 | 6417 | } |
6411 | 6418 | // Eq. (56) in [DT_1977] |
6412 | 6419 | else if(multipoleA == mux && multipoleB == mux){ |
6413 | - double temp1 = pow(rAB,2.0) + pow(DA-DB,2.0) + pow(a,2.0); | |
6414 | - double temp2 = pow(rAB,2.0) + pow(DA+DB,2.0) + pow(a,2.0); | |
6420 | + double temp1 = (rAB*rAB) + ((DA-DB)*(DA-DB)) + (a*a); | |
6421 | + double temp2 = (rAB*rAB) + ((DA+DB)*(DA+DB)) + (a*a); | |
6415 | 6422 | value = (rAB)*pow(temp1,-1.5)/2.0 |
6416 | 6423 | -(rAB)*pow(temp2,-1.5)/2.0; |
6417 | 6424 | value *= -1.0; |
@@ -6421,10 +6428,10 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction1stDerivative(const Atom& atomA | ||
6421 | 6428 | } |
6422 | 6429 | // Eq. (57) in [DT_1977] |
6423 | 6430 | else if(multipoleA == muz && multipoleB == muz){ |
6424 | - double temp1 = pow(rAB+DA-DB,2.0) + pow(a,2.0); | |
6425 | - double temp2 = pow(rAB+DA+DB,2.0) + pow(a,2.0); | |
6426 | - double temp3 = pow(rAB-DA-DB,2.0) + pow(a,2.0); | |
6427 | - double temp4 = pow(rAB-DA+DB,2.0) + pow(a,2.0); | |
6431 | + double temp1 = ((rAB+DA-DB)*(rAB+DA-DB)) + (a*a); | |
6432 | + double temp2 = ((rAB+DA+DB)*(rAB+DA+DB)) + (a*a); | |
6433 | + double temp3 = ((rAB-DA-DB)*(rAB-DA-DB)) + (a*a); | |
6434 | + double temp4 = ((rAB-DA+DB)*(rAB-DA+DB)) + (a*a); | |
6428 | 6435 | value = (rAB+DA-DB)*pow(temp1,-1.5)/4.0 |
6429 | 6436 | -(rAB+DA+DB)*pow(temp2,-1.5)/4.0 |
6430 | 6437 | -(rAB-DA-DB)*pow(temp3,-1.5)/4.0 |
@@ -6433,10 +6440,10 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction1stDerivative(const Atom& atomA | ||
6433 | 6440 | } |
6434 | 6441 | // Eq. (58) in [DT_1977] |
6435 | 6442 | else if(multipoleA == mux && multipoleB == Qxz){ |
6436 | - double temp1 = pow(rAB-DB,2.0) + pow(DA-DB,2.0) + pow(a,2.0); | |
6437 | - double temp2 = pow(rAB-DB,2.0) + pow(DA+DB,2.0) + pow(a,2.0); | |
6438 | - double temp3 = pow(rAB+DB,2.0) + pow(DA-DB,2.0) + pow(a,2.0); | |
6439 | - double temp4 = pow(rAB+DB,2.0) + pow(DA+DB,2.0) + pow(a,2.0); | |
6443 | + double temp1 = ((rAB-DB)*(rAB-DB)) + ((DA-DB)*(DA-DB)) + (a*a); | |
6444 | + double temp2 = ((rAB-DB)*(rAB-DB)) + ((DA+DB)*(DA+DB)) + (a*a); | |
6445 | + double temp3 = ((rAB+DB)*(rAB+DB)) + ((DA-DB)*(DA-DB)) + (a*a); | |
6446 | + double temp4 = ((rAB+DB)*(rAB+DB)) + ((DA+DB)*(DA+DB)) + (a*a); | |
6440 | 6447 | value =-(rAB-DB)*pow(temp1,-1.5)/4.0 |
6441 | 6448 | +(rAB-DB)*pow(temp2,-1.5)/4.0 |
6442 | 6449 | +(rAB+DB)*pow(temp3,-1.5)/4.0 |
@@ -6445,21 +6452,23 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction1stDerivative(const Atom& atomA | ||
6445 | 6452 | } |
6446 | 6453 | else if(multipoleA == Qxz && multipoleB == mux){ |
6447 | 6454 | value = this->GetSemiEmpiricalMultipoleInteraction1stDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6448 | - value *= pow(-1.0,3.0); | |
6455 | + //value *= pow(-1.0,3.0); | |
6456 | + value *= -1.0; | |
6449 | 6457 | } |
6450 | 6458 | else if(multipoleA == muy && multipoleB == Qyz){ |
6451 | 6459 | value = this->GetSemiEmpiricalMultipoleInteraction1stDerivative(atomA, atomB, mux, Qxz, rAB); |
6452 | 6460 | } |
6453 | 6461 | else if(multipoleA == Qyz && multipoleB == muy){ |
6454 | 6462 | value = this->GetSemiEmpiricalMultipoleInteraction1stDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6455 | - value *= pow(-1.0,3.0); | |
6463 | + //value *= pow(-1.0,3.0); | |
6464 | + value *= -1.0; | |
6456 | 6465 | } |
6457 | 6466 | // Eq. (59) in [DT_1977] |
6458 | 6467 | else if(multipoleA == muz && multipoleB == Qxx){ |
6459 | - double temp1 = pow(rAB+DA,2.0) + pow(2.0*DB,2.0) + pow(a,2.0); | |
6460 | - double temp2 = pow(rAB-DA,2.0) + pow(2.0*DB,2.0) + pow(a,2.0); | |
6461 | - double temp3 = pow(rAB+DA,2.0) + pow(a,2.0); | |
6462 | - double temp4 = pow(rAB-DA,2.0) + pow(a,2.0); | |
6468 | + double temp1 = ((rAB+DA)*(rAB+DA)) + (4.0*DB*DB) + (a*a); | |
6469 | + double temp2 = ((rAB-DA)*(rAB-DA)) + (4.0*DB*DB) + (a*a); | |
6470 | + double temp3 = ((rAB+DA)*(rAB+DA)) + (a*a); | |
6471 | + double temp4 = ((rAB-DA)*(rAB-DA)) + (a*a); | |
6463 | 6472 | value =-(rAB+DA)*pow(temp1,-1.5)/4.0 |
6464 | 6473 | +(rAB-DA)*pow(temp2,-1.5)/4.0 |
6465 | 6474 | +(rAB+DA)*pow(temp3,-1.5)/4.0 |
@@ -6468,23 +6477,25 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction1stDerivative(const Atom& atomA | ||
6468 | 6477 | } |
6469 | 6478 | else if(multipoleA == Qxx && multipoleB == muz){ |
6470 | 6479 | value = this->GetSemiEmpiricalMultipoleInteraction1stDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6471 | - value *= pow(-1.0,3.0); | |
6480 | + //value *= pow(-1.0,3.0); | |
6481 | + value *= -1.0; | |
6472 | 6482 | } |
6473 | 6483 | else if(multipoleA == muz && multipoleB == Qyy){ |
6474 | 6484 | value = this->GetSemiEmpiricalMultipoleInteraction1stDerivative(atomA, atomB, muz, Qxx, rAB); |
6475 | 6485 | } |
6476 | 6486 | else if(multipoleA == Qyy && multipoleB == muz){ |
6477 | 6487 | value = this->GetSemiEmpiricalMultipoleInteraction1stDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6478 | - value *= pow(-1.0,3.0); | |
6488 | + //value *= pow(-1.0,3.0); | |
6489 | + value *= -1.0; | |
6479 | 6490 | } |
6480 | 6491 | // Eq. (60) in [DT_1977] |
6481 | 6492 | else if(multipoleA == muz && multipoleB == Qzz){ |
6482 | - double temp1 = pow(rAB+DA-2.0*DB,2.0) + pow(a,2.0); | |
6483 | - double temp2 = pow(rAB-DA-2.0*DB,2.0) + pow(a,2.0); | |
6484 | - double temp3 = pow(rAB+DA+2.0*DB,2.0) + pow(a,2.0); | |
6485 | - double temp4 = pow(rAB-DA+2.0*DB,2.0) + pow(a,2.0); | |
6486 | - double temp5 = pow(rAB+DA,2.0) + pow(a,2.0); | |
6487 | - double temp6 = pow(rAB-DA,2.0) + pow(a,2.0); | |
6493 | + double temp1 = ((rAB+DA-2.0*DB)*(rAB+DA-2.0*DB)) + (a*a); | |
6494 | + double temp2 = ((rAB-DA-2.0*DB)*(rAB-DA-2.0*DB)) + (a*a); | |
6495 | + double temp3 = ((rAB+DA+2.0*DB)*(rAB+DA+2.0*DB)) + (a*a); | |
6496 | + double temp4 = ((rAB-DA+2.0*DB)*(rAB-DA+2.0*DB)) + (a*a); | |
6497 | + double temp5 = ((rAB+DA)*(rAB+DA)) + (a*a); | |
6498 | + double temp6 = ((rAB-DA)*(rAB-DA)) + (a*a); | |
6488 | 6499 | value =-(rAB+DA-2.0*DB)*pow(temp1,-1.5)/8.0 |
6489 | 6500 | +(rAB-DA-2.0*DB)*pow(temp2,-1.5)/8.0 |
6490 | 6501 | -(rAB+DA+2.0*DB)*pow(temp3,-1.5)/8.0 |
@@ -6495,15 +6506,16 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction1stDerivative(const Atom& atomA | ||
6495 | 6506 | } |
6496 | 6507 | else if(multipoleA == Qzz && multipoleB == muz){ |
6497 | 6508 | value = this->GetSemiEmpiricalMultipoleInteraction1stDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6498 | - value *= pow(-1.0,3.0); | |
6509 | + //value *= pow(-1.0,3.0); | |
6510 | + value *= -1.0; | |
6499 | 6511 | } |
6500 | 6512 | // Eq. (61) in [DT_1977] |
6501 | 6513 | else if(multipoleA == Qxx && multipoleB == Qxx){ |
6502 | - double temp1 = pow(rAB,2.0) + 4.0*pow(DA-DB,2.0) + pow(a,2.0); | |
6503 | - double temp2 = pow(rAB,2.0) + 4.0*pow(DA+DB,2.0) + pow(a,2.0); | |
6504 | - double temp3 = pow(rAB,2.0) + pow(2.0*DA,2.0) + pow(a,2.0); | |
6505 | - double temp4 = pow(rAB,2.0) + pow(2.0*DB,2.0) + pow(a,2.0); | |
6506 | - double temp5 = pow(rAB,2.0) + pow(a,2.0); | |
6514 | + double temp1 = (rAB*rAB) + 4.0*((DA-DB)*(DA-DB)) + (a*a); | |
6515 | + double temp2 = (rAB*rAB) + 4.0*((DA+DB)*(DA+DB)) + (a*a); | |
6516 | + double temp3 = (rAB*rAB) + (4.0*DA*DA) + (a*a); | |
6517 | + double temp4 = (rAB*rAB) + (4.0*DB*DB) + (a*a); | |
6518 | + double temp5 = (rAB*rAB) + (a*a); | |
6507 | 6519 | value = (rAB)*pow(temp1,-1.5)/8.0 |
6508 | 6520 | +(rAB)*pow(temp2,-1.5)/8.0 |
6509 | 6521 | -(rAB)*pow(temp3,-1.5)/4.0 |
@@ -6516,10 +6528,10 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction1stDerivative(const Atom& atomA | ||
6516 | 6528 | } |
6517 | 6529 | // Eq. (62) in [DT_1977] |
6518 | 6530 | else if(multipoleA == Qxx && multipoleB == Qyy){ |
6519 | - double temp1 = pow(rAB,2.0) + pow(2.0*DA,2.0) + pow(2.0*DB,2.0)+ pow(a,2.0); | |
6520 | - double temp2 = pow(rAB,2.0) + pow(2.0*DA,2.0) + pow(a,2.0); | |
6521 | - double temp3 = pow(rAB,2.0) + pow(2.0*DB,2.0) + pow(a,2.0); | |
6522 | - double temp4 = pow(rAB,2.0) + pow(a,2.0); | |
6531 | + double temp1 = (rAB*rAB) + (4.0*DA*DA) + (4.0*DB*DB)+ (a*a); | |
6532 | + double temp2 = (rAB*rAB) + (4.0*DA*DA) + (a*a); | |
6533 | + double temp3 = (rAB*rAB) + (4.0*DB*DB) + (a*a); | |
6534 | + double temp4 = (rAB*rAB) + (a*a); | |
6523 | 6535 | value = (rAB)*pow(temp1,-1.5)/4.0 |
6524 | 6536 | -(rAB)*pow(temp2,-1.5)/4.0 |
6525 | 6537 | -(rAB)*pow(temp3,-1.5)/4.0 |
@@ -6528,16 +6540,16 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction1stDerivative(const Atom& atomA | ||
6528 | 6540 | } |
6529 | 6541 | else if(multipoleA == Qyy && multipoleB == Qxx){ |
6530 | 6542 | value = this->GetSemiEmpiricalMultipoleInteraction1stDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6531 | - value *= pow(-1.0,4.0); | |
6543 | + //value *= pow(-1.0,4.0); | |
6532 | 6544 | } |
6533 | 6545 | // Eq. (63) in [DT_1977] |
6534 | 6546 | else if(multipoleA == Qxx && multipoleB == Qzz){ |
6535 | - double temp1 = pow(rAB-2.0*DB,2.0) + pow(2.0*DA,2.0) + pow(a,2.0); | |
6536 | - double temp2 = pow(rAB+2.0*DB,2.0) + pow(2.0*DA,2.0) + pow(a,2.0); | |
6537 | - double temp3 = pow(rAB-2.0*DB,2.0) + pow(a,2.0); | |
6538 | - double temp4 = pow(rAB+2.0*DB,2.0) + pow(a,2.0); | |
6539 | - double temp5 = pow(rAB,2.0) + pow(2.0*DA,2.0) + pow(a,2.0); | |
6540 | - double temp6 = pow(rAB,2.0) + pow(a,2.0); | |
6547 | + double temp1 = ((rAB-2.0*DB)*(rAB-2.0*DB)) + (4.0*DA*DA) + (a*a); | |
6548 | + double temp2 = ((rAB+2.0*DB)*(rAB+2.0*DB)) + (4.0*DA*DA) + (a*a); | |
6549 | + double temp3 = ((rAB-2.0*DB)*(rAB-2.0*DB)) + (a*a); | |
6550 | + double temp4 = ((rAB+2.0*DB)*(rAB+2.0*DB)) + (a*a); | |
6551 | + double temp5 = (rAB*rAB) + (4.0*DA*DA) + (a*a); | |
6552 | + double temp6 = (rAB*rAB) + (a*a); | |
6541 | 6553 | value = (rAB-2.0*DB)*pow(temp1,-1.5)/8.0 |
6542 | 6554 | +(rAB+2.0*DB)*pow(temp2,-1.5)/8.0 |
6543 | 6555 | -(rAB-2.0*DB)*pow(temp3,-1.5)/8.0 |
@@ -6548,26 +6560,26 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction1stDerivative(const Atom& atomA | ||
6548 | 6560 | } |
6549 | 6561 | else if(multipoleA == Qzz && multipoleB == Qxx){ |
6550 | 6562 | value = this->GetSemiEmpiricalMultipoleInteraction1stDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6551 | - value *= pow(-1.0,4.0); | |
6563 | + //value *= pow(-1.0,4.0); | |
6552 | 6564 | } |
6553 | 6565 | else if(multipoleA == Qyy && multipoleB == Qzz){ |
6554 | 6566 | value = this->GetSemiEmpiricalMultipoleInteraction1stDerivative(atomA, atomB, Qxx, multipoleB, rAB); |
6555 | 6567 | } |
6556 | 6568 | else if(multipoleA == Qzz && multipoleB == Qyy){ |
6557 | 6569 | value = this->GetSemiEmpiricalMultipoleInteraction1stDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6558 | - value *= pow(-1.0,4.0); | |
6570 | + //value *= pow(-1.0,4.0); | |
6559 | 6571 | } |
6560 | 6572 | // Eq. (64) in [DT_1977] |
6561 | 6573 | else if(multipoleA == Qzz && multipoleB == Qzz){ |
6562 | - double temp1 = pow(rAB+2.0*DA-2.0*DB,2.0) + pow(a,2.0); | |
6563 | - double temp2 = pow(rAB+2.0*DA+2.0*DB,2.0) + pow(a,2.0); | |
6564 | - double temp3 = pow(rAB-2.0*DA-2.0*DB,2.0) + pow(a,2.0); | |
6565 | - double temp4 = pow(rAB-2.0*DA+2.0*DB,2.0) + pow(a,2.0); | |
6566 | - double temp5 = pow(rAB+2.0*DA,2.0) + pow(a,2.0); | |
6567 | - double temp6 = pow(rAB-2.0*DA,2.0) + pow(a,2.0); | |
6568 | - double temp7 = pow(rAB+2.0*DB,2.0) + pow(a,2.0); | |
6569 | - double temp8 = pow(rAB-2.0*DB,2.0) + pow(a,2.0); | |
6570 | - double temp9 = pow(rAB,2.0) + pow(a,2.0); | |
6574 | + double temp1 = ((rAB+2.0*DA-2.0*DB)*(rAB+2.0*DA-2.0*DB)) + (a*a); | |
6575 | + double temp2 = ((rAB+2.0*DA+2.0*DB)*(rAB+2.0*DA+2.0*DB)) + (a*a); | |
6576 | + double temp3 = ((rAB-2.0*DA-2.0*DB)*(rAB-2.0*DA-2.0*DB)) + (a*a); | |
6577 | + double temp4 = ((rAB-2.0*DA+2.0*DB)*(rAB-2.0*DA+2.0*DB)) + (a*a); | |
6578 | + double temp5 = pow(rAB+2.0*DA,2.0) + (a*a); | |
6579 | + double temp6 = pow(rAB-2.0*DA,2.0) + (a*a); | |
6580 | + double temp7 = ((rAB+2.0*DB)*(rAB+2.0*DB)) + (a*a); | |
6581 | + double temp8 = ((rAB-2.0*DB)*(rAB-2.0*DB)) + (a*a); | |
6582 | + double temp9 = (rAB*rAB) + (a*a); | |
6571 | 6583 | value = (rAB+2.0*DA-2.0*DB)*pow(temp1,-1.5)/16.0 |
6572 | 6584 | +(rAB+2.0*DA+2.0*DB)*pow(temp2,-1.5)/16.0 |
6573 | 6585 | +(rAB-2.0*DA-2.0*DB)*pow(temp3,-1.5)/16.0 |
@@ -6581,14 +6593,14 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction1stDerivative(const Atom& atomA | ||
6581 | 6593 | } |
6582 | 6594 | // Eq. (65) in [DT_1977] |
6583 | 6595 | else if(multipoleA == Qxz && multipoleB == Qxz){ |
6584 | - double temp1 = pow(rAB+DA-DB,2.0) + pow(DA-DB,2.0) + pow(a,2.0); | |
6585 | - double temp2 = pow(rAB+DA-DB,2.0) + pow(DA+DB,2.0) + pow(a,2.0); | |
6586 | - double temp3 = pow(rAB+DA+DB,2.0) + pow(DA-DB,2.0) + pow(a,2.0); | |
6587 | - double temp4 = pow(rAB+DA+DB,2.0) + pow(DA+DB,2.0) + pow(a,2.0); | |
6588 | - double temp5 = pow(rAB-DA-DB,2.0) + pow(DA-DB,2.0) + pow(a,2.0); | |
6589 | - double temp6 = pow(rAB-DA-DB,2.0) + pow(DA+DB,2.0) + pow(a,2.0); | |
6590 | - double temp7 = pow(rAB-DA+DB,2.0) + pow(DA-DB,2.0) + pow(a,2.0); | |
6591 | - double temp8 = pow(rAB-DA+DB,2.0) + pow(DA+DB,2.0) + pow(a,2.0); | |
6596 | + double temp1 = ((rAB+DA-DB)*(rAB+DA-DB)) + ((DA-DB)*(DA-DB)) + (a*a); | |
6597 | + double temp2 = ((rAB+DA-DB)*(rAB+DA-DB)) + ((DA+DB)*(DA+DB)) + (a*a); | |
6598 | + double temp3 = ((rAB+DA+DB)*(rAB+DA+DB)) + ((DA-DB)*(DA-DB)) + (a*a); | |
6599 | + double temp4 = ((rAB+DA+DB)*(rAB+DA+DB)) + ((DA+DB)*(DA+DB)) + (a*a); | |
6600 | + double temp5 = ((rAB-DA-DB)*(rAB-DA-DB)) + ((DA-DB)*(DA-DB)) + (a*a); | |
6601 | + double temp6 = ((rAB-DA-DB)*(rAB-DA-DB)) + ((DA+DB)*(DA+DB)) + (a*a); | |
6602 | + double temp7 = ((rAB-DA+DB)*(rAB-DA+DB)) + ((DA-DB)*(DA-DB)) + (a*a); | |
6603 | + double temp8 = ((rAB-DA+DB)*(rAB-DA+DB)) + ((DA+DB)*(DA+DB)) + (a*a); | |
6592 | 6604 | value = (rAB+DA-DB)*pow(temp1,-1.5)/8.0 |
6593 | 6605 | -(rAB+DA-DB)*pow(temp2,-1.5)/8.0 |
6594 | 6606 | -(rAB+DA+DB)*pow(temp3,-1.5)/8.0 |
@@ -6604,9 +6616,9 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction1stDerivative(const Atom& atomA | ||
6604 | 6616 | } |
6605 | 6617 | // Eq. (66) in [DT_1977] |
6606 | 6618 | else if(multipoleA == Qxy && multipoleB == Qxy){ |
6607 | - double temp1 = pow(rAB,2.0) + 2.0*pow(DA-DB,2.0) + pow(a,2.0); | |
6608 | - double temp2 = pow(rAB,2.0) + 2.0*pow(DA+DB,2.0) + pow(a,2.0); | |
6609 | - double temp3 = pow(rAB,2.0) + 2.0*pow(DA,2.0) + 2.0*pow(DB,2.0) + pow(a,2.0); | |
6619 | + double temp1 = (rAB*rAB) + 2.0*((DA-DB)*(DA-DB)) + (a*a); | |
6620 | + double temp2 = (rAB*rAB) + 2.0*((DA+DB)*(DA+DB)) + (a*a); | |
6621 | + double temp3 = (rAB*rAB) + 2.0*(DA*DA) + 2.0*(DB*DB) + (a*a); | |
6610 | 6622 | value = (rAB)*pow(temp1,-1.5)/4.0 |
6611 | 6623 | +(rAB)*pow(temp2,-1.5)/4.0 |
6612 | 6624 | -(rAB)*pow(temp3,-1.5)/2.0; |
@@ -6640,74 +6652,75 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction2ndDerivative(const Atom& atomA | ||
6640 | 6652 | // Eq. (52) in [DT_1977] |
6641 | 6653 | if(multipoleA == sQ && multipoleB == sQ){ |
6642 | 6654 | double c1 = 1.0; |
6643 | - double f1 = pow(rAB,2.0); | |
6644 | - double a1 = pow(a,2.0); | |
6655 | + double f1 = (rAB*rAB); | |
6656 | + double a1 = (a*a); | |
6645 | 6657 | value = c1*(3.0*f1*pow(f1+a1,-2.5) - pow(f1+a1,-1.5)); |
6646 | 6658 | } |
6647 | 6659 | // Eq. (53) in [DT_1977] |
6648 | 6660 | else if(multipoleA == sQ && multipoleB == muz){ |
6649 | 6661 | double c1 = 0.5; |
6650 | 6662 | double c2 = -0.5; |
6651 | - double f1 = pow(rAB+DB,2.0); | |
6652 | - double f2 = pow(rAB-DB,2.0); | |
6653 | - double a1 = pow(a,2.0); | |
6654 | - double a2 = pow(a,2.0); | |
6663 | + double f1 = ((rAB+DB)*(rAB+DB)); | |
6664 | + double f2 = ((rAB-DB)*(rAB-DB)); | |
6665 | + double a1 = (a*a); | |
6666 | + double a2 = (a*a); | |
6655 | 6667 | value = c1*(3.0*f1*pow(f1+a1,-2.5) - pow(f1+a1,-1.5)); |
6656 | 6668 | value += c2*(3.0*f2*pow(f2+a2,-2.5) - pow(f2+a2,-1.5)); |
6657 | 6669 | } |
6658 | 6670 | else if(multipoleA == muz && multipoleB == sQ){ |
6659 | 6671 | value = this->GetSemiEmpiricalMultipoleInteraction2ndDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6660 | - value *= pow(-1.0,1.0); | |
6672 | + //value *= pow(-1.0,1.0); | |
6673 | + value *= -1.0; | |
6661 | 6674 | } |
6662 | 6675 | // Eq. (54) in [DT_1977] |
6663 | 6676 | else if(multipoleA == sQ && multipoleB == Qxx){ |
6664 | 6677 | double c1 = 0.5; |
6665 | 6678 | double c2 = -0.5; |
6666 | - double f1 = pow(rAB,2.0); | |
6667 | - double f2 = pow(rAB,2.0); | |
6668 | - double a1 = pow(2.0*DB,2.0) + pow(a,2.0); | |
6669 | - double a2 = pow(a,2.0); | |
6679 | + double f1 = (rAB*rAB); | |
6680 | + double f2 = (rAB*rAB); | |
6681 | + double a1 = (4.0*DB*DB) + (a*a); | |
6682 | + double a2 = (a*a); | |
6670 | 6683 | value = c1*(3.0*f1*pow(f1+a1,-2.5) - pow(f1+a1,-1.5)); |
6671 | 6684 | value += c2*(3.0*f2*pow(f2+a2,-2.5) - pow(f2+a2,-1.5)); |
6672 | 6685 | } |
6673 | 6686 | else if(multipoleA == Qxx && multipoleB == sQ){ |
6674 | 6687 | value = this->GetSemiEmpiricalMultipoleInteraction2ndDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6675 | - value *= pow(-1.0,2.0); | |
6688 | + //value *= pow(-1.0,2.0); | |
6676 | 6689 | } |
6677 | 6690 | else if(multipoleA == sQ && multipoleB == Qyy){ |
6678 | 6691 | value = this->GetSemiEmpiricalMultipoleInteraction2ndDerivative(atomA, atomB, multipoleA, Qxx, rAB); |
6679 | 6692 | } |
6680 | 6693 | else if(multipoleA == Qyy && multipoleB == sQ){ |
6681 | 6694 | value = this->GetSemiEmpiricalMultipoleInteraction2ndDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6682 | - value *= pow(-1.0,2.0); | |
6695 | + //value *= pow(-1.0,2.0); | |
6683 | 6696 | } |
6684 | 6697 | // Eq. (55) in [DT_1977] |
6685 | 6698 | else if(multipoleA == sQ && multipoleB == Qzz){ |
6686 | 6699 | double c1 = 0.25; |
6687 | 6700 | double c2 = -0.50; |
6688 | 6701 | double c3 = 0.25; |
6689 | - double f1 = pow(rAB+2.0*DB,2.0); | |
6690 | - double f2 = pow(rAB,2.0); | |
6691 | - double f3 = pow(rAB-2.0*DB,2.0); | |
6692 | - double a1 = pow(a,2.0); | |
6693 | - double a2 = pow(a,2.0); | |
6694 | - double a3 = pow(a,2.0); | |
6702 | + double f1 = ((rAB+2.0*DB)*(rAB+2.0*DB)); | |
6703 | + double f2 = (rAB*rAB); | |
6704 | + double f3 = ((rAB-2.0*DB)*(rAB-2.0*DB)); | |
6705 | + double a1 = (a*a); | |
6706 | + double a2 = (a*a); | |
6707 | + double a3 = (a*a); | |
6695 | 6708 | value = c1*(3.0*f1*pow(f1+a1,-2.5) - pow(f1+a1,-1.5)); |
6696 | 6709 | value += c2*(3.0*f2*pow(f2+a2,-2.5) - pow(f2+a2,-1.5)); |
6697 | 6710 | value += c3*(3.0*f3*pow(f3+a3,-2.5) - pow(f3+a3,-1.5)); |
6698 | 6711 | } |
6699 | 6712 | else if(multipoleA == Qzz && multipoleB == sQ){ |
6700 | 6713 | value = this->GetSemiEmpiricalMultipoleInteraction2ndDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6701 | - value *= pow(-1.0,2.0); | |
6714 | + //value *= pow(-1.0,2.0); | |
6702 | 6715 | } |
6703 | 6716 | // Eq. (56) in [DT_1977] |
6704 | 6717 | else if(multipoleA == mux && multipoleB == mux){ |
6705 | 6718 | double c1 = 0.50; |
6706 | 6719 | double c2 = -0.50; |
6707 | - double f1 = pow(rAB,2.0); | |
6708 | - double f2 = pow(rAB,2.0); | |
6709 | - double a1 = pow(DA-DB,2.0) + pow(a,2.0); | |
6710 | - double a2 = pow(DA+DB,2.0) + pow(a,2.0); | |
6720 | + double f1 = (rAB*rAB); | |
6721 | + double f2 = (rAB*rAB); | |
6722 | + double a1 = ((DA-DB)*(DA-DB)) + (a*a); | |
6723 | + double a2 = ((DA+DB)*(DA+DB)) + (a*a); | |
6711 | 6724 | value = c1*(3.0*f1*pow(f1+a1,-2.5) - pow(f1+a1,-1.5)); |
6712 | 6725 | value += c2*(3.0*f2*pow(f2+a2,-2.5) - pow(f2+a2,-1.5)); |
6713 | 6726 | } |
@@ -6720,14 +6733,14 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction2ndDerivative(const Atom& atomA | ||
6720 | 6733 | double c2 = -0.25; |
6721 | 6734 | double c3 = -0.25; |
6722 | 6735 | double c4 = 0.25; |
6723 | - double f1 = pow(rAB+DA-DB,2.0); | |
6724 | - double f2 = pow(rAB+DA+DB,2.0); | |
6725 | - double f3 = pow(rAB-DA-DB,2.0); | |
6726 | - double f4 = pow(rAB-DA+DB,2.0); | |
6727 | - double a1 = pow(a,2.0); | |
6728 | - double a2 = pow(a,2.0); | |
6729 | - double a3 = pow(a,2.0); | |
6730 | - double a4 = pow(a,2.0); | |
6736 | + double f1 = ((rAB+DA-DB)*(rAB+DA-DB)); | |
6737 | + double f2 = ((rAB+DA+DB)*(rAB+DA+DB)); | |
6738 | + double f3 = ((rAB-DA-DB)*(rAB-DA-DB)); | |
6739 | + double f4 = ((rAB-DA+DB)*(rAB-DA+DB)); | |
6740 | + double a1 = (a*a); | |
6741 | + double a2 = (a*a); | |
6742 | + double a3 = (a*a); | |
6743 | + double a4 = (a*a); | |
6731 | 6744 | value = c1*(3.0*f1*pow(f1+a1,-2.5) - pow(f1+a1,-1.5)); |
6732 | 6745 | value += c2*(3.0*f2*pow(f2+a2,-2.5) - pow(f2+a2,-1.5)); |
6733 | 6746 | value += c3*(3.0*f3*pow(f3+a3,-2.5) - pow(f3+a3,-1.5)); |
@@ -6739,14 +6752,14 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction2ndDerivative(const Atom& atomA | ||
6739 | 6752 | double c2 = 0.25; |
6740 | 6753 | double c3 = 0.25; |
6741 | 6754 | double c4 = -0.25; |
6742 | - double f1 = pow(rAB-DB,2.0); | |
6743 | - double f2 = pow(rAB-DB,2.0); | |
6744 | - double f3 = pow(rAB+DB,2.0); | |
6745 | - double f4 = pow(rAB+DB,2.0); | |
6746 | - double a1 = pow(DA-DB,2.0) + pow(a,2.0); | |
6747 | - double a2 = pow(DA+DB,2.0) + pow(a,2.0); | |
6748 | - double a3 = pow(DA-DB,2.0) + pow(a,2.0); | |
6749 | - double a4 = pow(DA+DB,2.0) + pow(a,2.0); | |
6755 | + double f1 = ((rAB-DB)*(rAB-DB)); | |
6756 | + double f2 = ((rAB-DB)*(rAB-DB)); | |
6757 | + double f3 = ((rAB+DB)*(rAB+DB)); | |
6758 | + double f4 = ((rAB+DB)*(rAB+DB)); | |
6759 | + double a1 = ((DA-DB)*(DA-DB)) + (a*a); | |
6760 | + double a2 = ((DA+DB)*(DA+DB)) + (a*a); | |
6761 | + double a3 = ((DA-DB)*(DA-DB)) + (a*a); | |
6762 | + double a4 = ((DA+DB)*(DA+DB)) + (a*a); | |
6750 | 6763 | value = c1*(3.0*f1*pow(f1+a1,-2.5) - pow(f1+a1,-1.5)); |
6751 | 6764 | value += c2*(3.0*f2*pow(f2+a2,-2.5) - pow(f2+a2,-1.5)); |
6752 | 6765 | value += c3*(3.0*f3*pow(f3+a3,-2.5) - pow(f3+a3,-1.5)); |
@@ -6754,14 +6767,16 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction2ndDerivative(const Atom& atomA | ||
6754 | 6767 | } |
6755 | 6768 | else if(multipoleA == Qxz && multipoleB == mux){ |
6756 | 6769 | value = this->GetSemiEmpiricalMultipoleInteraction2ndDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6757 | - value *= pow(-1.0,3.0); | |
6770 | + //value *= pow(-1.0,3.0); | |
6771 | + value *= -1.0; | |
6758 | 6772 | } |
6759 | 6773 | else if(multipoleA == muy && multipoleB == Qyz){ |
6760 | 6774 | value = this->GetSemiEmpiricalMultipoleInteraction2ndDerivative(atomA, atomB, mux, Qxz, rAB); |
6761 | 6775 | } |
6762 | 6776 | else if(multipoleA == Qyz && multipoleB == muy){ |
6763 | 6777 | value = this->GetSemiEmpiricalMultipoleInteraction2ndDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6764 | - value *= pow(-1.0,3.0); | |
6778 | + //value *= pow(-1.0,3.0); | |
6779 | + value *= -1.0; | |
6765 | 6780 | } |
6766 | 6781 | // Eq. (59) in [DT_1977] |
6767 | 6782 | else if(multipoleA == muz && multipoleB == Qxx){ |
@@ -6769,14 +6784,14 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction2ndDerivative(const Atom& atomA | ||
6769 | 6784 | double c2 = 0.25; |
6770 | 6785 | double c3 = 0.25; |
6771 | 6786 | double c4 = -0.25; |
6772 | - double f1 = pow(rAB+DA,2.0); | |
6773 | - double f2 = pow(rAB-DA,2.0); | |
6774 | - double f3 = pow(rAB+DA,2.0); | |
6775 | - double f4 = pow(rAB-DA,2.0); | |
6776 | - double a1 = pow(2.0*DB,2.0) + pow(a,2.0); | |
6777 | - double a2 = pow(2.0*DB,2.0) + pow(a,2.0); | |
6778 | - double a3 = pow(a,2.0); | |
6779 | - double a4 = pow(a,2.0); | |
6787 | + double f1 = ((rAB+DA)*(rAB+DA)); | |
6788 | + double f2 = ((rAB-DA)*(rAB-DA)); | |
6789 | + double f3 = ((rAB+DA)*(rAB+DA)); | |
6790 | + double f4 = ((rAB-DA)*(rAB-DA)); | |
6791 | + double a1 = (4.0*DB*DB) + (a*a); | |
6792 | + double a2 = (4.0*DB*DB) + (a*a); | |
6793 | + double a3 = (a*a); | |
6794 | + double a4 = (a*a); | |
6780 | 6795 | value = c1*(3.0*f1*pow(f1+a1,-2.5) - pow(f1+a1,-1.5)); |
6781 | 6796 | value += c2*(3.0*f2*pow(f2+a2,-2.5) - pow(f2+a2,-1.5)); |
6782 | 6797 | value += c3*(3.0*f3*pow(f3+a3,-2.5) - pow(f3+a3,-1.5)); |
@@ -6784,14 +6799,16 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction2ndDerivative(const Atom& atomA | ||
6784 | 6799 | } |
6785 | 6800 | else if(multipoleA == Qxx && multipoleB == muz){ |
6786 | 6801 | value = this->GetSemiEmpiricalMultipoleInteraction2ndDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6787 | - value *= pow(-1.0,3.0); | |
6802 | + //value *= pow(-1.0,3.0); | |
6803 | + value *= -1.0; | |
6788 | 6804 | } |
6789 | 6805 | else if(multipoleA == muz && multipoleB == Qyy){ |
6790 | 6806 | value = this->GetSemiEmpiricalMultipoleInteraction2ndDerivative(atomA, atomB, muz, Qxx, rAB); |
6791 | 6807 | } |
6792 | 6808 | else if(multipoleA == Qyy && multipoleB == muz){ |
6793 | 6809 | value = this->GetSemiEmpiricalMultipoleInteraction2ndDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6794 | - value *= pow(-1.0,3.0); | |
6810 | + //value *= pow(-1.0,3.0); | |
6811 | + value *= -1.0; | |
6795 | 6812 | } |
6796 | 6813 | // Eq. (60) in [DT_1977] |
6797 | 6814 | else if(multipoleA == muz && multipoleB == Qzz){ |
@@ -6801,18 +6818,18 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction2ndDerivative(const Atom& atomA | ||
6801 | 6818 | double c4 = 0.125; |
6802 | 6819 | double c5 = 0.25; |
6803 | 6820 | double c6 = -0.25; |
6804 | - double f1 = pow(rAB+DA-2.0*DB,2.0); | |
6805 | - double f2 = pow(rAB-DA-2.0*DB,2.0); | |
6806 | - double f3 = pow(rAB+DA+2.0*DB,2.0); | |
6807 | - double f4 = pow(rAB-DA+2.0*DB,2.0); | |
6808 | - double f5 = pow(rAB+DA,2.0); | |
6809 | - double f6 = pow(rAB-DA,2.0); | |
6810 | - double a1 = pow(a,2.0); | |
6811 | - double a2 = pow(a,2.0); | |
6812 | - double a3 = pow(a,2.0); | |
6813 | - double a4 = pow(a,2.0); | |
6814 | - double a5 = pow(a,2.0); | |
6815 | - double a6 = pow(a,2.0); | |
6821 | + double f1 = ((rAB+DA-2.0*DB)*(rAB+DA-2.0*DB)); | |
6822 | + double f2 = ((rAB-DA-2.0*DB)*(rAB-DA-2.0*DB)); | |
6823 | + double f3 = ((rAB+DA+2.0*DB)*(rAB+DA+2.0*DB)); | |
6824 | + double f4 = ((rAB-DA+2.0*DB)*(rAB-DA+2.0*DB)); | |
6825 | + double f5 = ((rAB+DA)*(rAB+DA)); | |
6826 | + double f6 = ((rAB-DA)*(rAB-DA)); | |
6827 | + double a1 = (a*a); | |
6828 | + double a2 = (a*a); | |
6829 | + double a3 = (a*a); | |
6830 | + double a4 = (a*a); | |
6831 | + double a5 = (a*a); | |
6832 | + double a6 = (a*a); | |
6816 | 6833 | value = c1*(3.0*f1*pow(f1+a1,-2.5) - pow(f1+a1,-1.5)); |
6817 | 6834 | value += c2*(3.0*f2*pow(f2+a2,-2.5) - pow(f2+a2,-1.5)); |
6818 | 6835 | value += c3*(3.0*f3*pow(f3+a3,-2.5) - pow(f3+a3,-1.5)); |
@@ -6822,7 +6839,8 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction2ndDerivative(const Atom& atomA | ||
6822 | 6839 | } |
6823 | 6840 | else if(multipoleA == Qzz && multipoleB == muz){ |
6824 | 6841 | value = this->GetSemiEmpiricalMultipoleInteraction2ndDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6825 | - value *= pow(-1.0,3.0); | |
6842 | + //value *= pow(-1.0,3.0); | |
6843 | + value *= -1.0; | |
6826 | 6844 | } |
6827 | 6845 | // Eq. (61) in [DT_1977] |
6828 | 6846 | else if(multipoleA == Qxx && multipoleB == Qxx){ |
@@ -6831,16 +6849,16 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction2ndDerivative(const Atom& atomA | ||
6831 | 6849 | double c3 = -0.25; |
6832 | 6850 | double c4 = -0.25; |
6833 | 6851 | double c5 = 0.25; |
6834 | - double f1 = pow(rAB,2.0); | |
6835 | - double f2 = pow(rAB,2.0); | |
6836 | - double f3 = pow(rAB,2.0); | |
6837 | - double f4 = pow(rAB,2.0); | |
6838 | - double f5 = pow(rAB,2.0); | |
6839 | - double a1 = 4.0*pow(DA-DB,2.0) + pow(a,2.0); | |
6840 | - double a2 = 4.0*pow(DA+DB,2.0) + pow(a,2.0); | |
6841 | - double a3 = pow(2.0*DA,2.0) + pow(a,2.0); | |
6842 | - double a4 = pow(2.0*DB,2.0) + pow(a,2.0); | |
6843 | - double a5 = pow(a,2.0); | |
6852 | + double f1 = (rAB*rAB); | |
6853 | + double f2 = (rAB*rAB); | |
6854 | + double f3 = (rAB*rAB); | |
6855 | + double f4 = (rAB*rAB); | |
6856 | + double f5 = (rAB*rAB); | |
6857 | + double a1 = 4.0*((DA-DB)*(DA-DB)) + (a*a); | |
6858 | + double a2 = 4.0*((DA+DB)*(DA+DB)) + (a*a); | |
6859 | + double a3 = (4.0*DA*DA) + (a*a); | |
6860 | + double a4 = (4.0*DB*DB) + (a*a); | |
6861 | + double a5 = (a*a); | |
6844 | 6862 | value = c1*(3.0*f1*pow(f1+a1,-2.5) - pow(f1+a1,-1.5)); |
6845 | 6863 | value += c2*(3.0*f2*pow(f2+a2,-2.5) - pow(f2+a2,-1.5)); |
6846 | 6864 | value += c3*(3.0*f3*pow(f3+a3,-2.5) - pow(f3+a3,-1.5)); |
@@ -6856,14 +6874,14 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction2ndDerivative(const Atom& atomA | ||
6856 | 6874 | double c2 = -0.25; |
6857 | 6875 | double c3 = -0.25; |
6858 | 6876 | double c4 = 0.25; |
6859 | - double f1 = pow(rAB,2.0); | |
6860 | - double f2 = pow(rAB,2.0); | |
6861 | - double f3 = pow(rAB,2.0); | |
6862 | - double f4 = pow(rAB,2.0); | |
6863 | - double a1 = pow(2.0*DA,2.0) + pow(2.0*DB,2.0) + pow(a,2.0); | |
6864 | - double a2 = pow(2.0*DA,2.0) + pow(a,2.0); | |
6865 | - double a3 = pow(2.0*DB,2.0) + pow(a,2.0); | |
6866 | - double a4 = pow(a,2.0); | |
6877 | + double f1 = (rAB*rAB); | |
6878 | + double f2 = (rAB*rAB); | |
6879 | + double f3 = (rAB*rAB); | |
6880 | + double f4 = (rAB*rAB); | |
6881 | + double a1 = (4.0*DA*DA) + (4.0*DB*DB) + (a*a); | |
6882 | + double a2 = (4.0*DA*DA) + (a*a); | |
6883 | + double a3 = (4.0*DB*DB) + (a*a); | |
6884 | + double a4 = (a*a); | |
6867 | 6885 | value = c1*(3.0*f1*pow(f1+a1,-2.5) - pow(f1+a1,-1.5)); |
6868 | 6886 | value += c2*(3.0*f2*pow(f2+a2,-2.5) - pow(f2+a2,-1.5)); |
6869 | 6887 | value += c3*(3.0*f3*pow(f3+a3,-2.5) - pow(f3+a3,-1.5)); |
@@ -6871,7 +6889,7 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction2ndDerivative(const Atom& atomA | ||
6871 | 6889 | } |
6872 | 6890 | else if(multipoleA == Qyy && multipoleB == Qxx){ |
6873 | 6891 | value = this->GetSemiEmpiricalMultipoleInteraction2ndDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6874 | - value *= pow(-1.0,4.0); | |
6892 | + //value *= pow(-1.0,4.0); | |
6875 | 6893 | } |
6876 | 6894 | // Eq. (63) in [DT_1977] |
6877 | 6895 | else if(multipoleA == Qxx && multipoleB == Qzz){ |
@@ -6881,18 +6899,18 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction2ndDerivative(const Atom& atomA | ||
6881 | 6899 | double c4 = -0.125; |
6882 | 6900 | double c5 = -0.25; |
6883 | 6901 | double c6 = 0.25; |
6884 | - double f1 = pow(rAB-2.0*DB,2.0); | |
6885 | - double f2 = pow(rAB+2.0*DB,2.0); | |
6886 | - double f3 = pow(rAB-2.0*DB,2.0); | |
6887 | - double f4 = pow(rAB+2.0*DB,2.0); | |
6888 | - double f5 = pow(rAB ,2.0); | |
6889 | - double f6 = pow(rAB ,2.0); | |
6890 | - double a1 = pow(2.0*DA,2.0) + pow(a,2.0); | |
6891 | - double a2 = pow(2.0*DA,2.0) + pow(a,2.0); | |
6892 | - double a3 = pow(a,2.0); | |
6893 | - double a4 = pow(a,2.0); | |
6894 | - double a5 = pow(2.0*DA,2.0) + pow(a,2.0); | |
6895 | - double a6 = pow(a,2.0); | |
6902 | + double f1 = ((rAB-2.0*DB)*(rAB-2.0*DB)); | |
6903 | + double f2 = ((rAB+2.0*DB)*(rAB+2.0*DB)); | |
6904 | + double f3 = ((rAB-2.0*DB)*(rAB-2.0*DB)); | |
6905 | + double f4 = ((rAB+2.0*DB)*(rAB+2.0*DB)); | |
6906 | + double f5 = rAB*rAB; | |
6907 | + double f6 = rAB*rAB; | |
6908 | + double a1 = (4.0*DA*DA) + (a*a); | |
6909 | + double a2 = (4.0*DA*DA) + (a*a); | |
6910 | + double a3 = (a*a); | |
6911 | + double a4 = (a*a); | |
6912 | + double a5 = (4.0*DA*DA) + (a*a); | |
6913 | + double a6 = (a*a); | |
6896 | 6914 | value = c1*(3.0*f1*pow(f1+a1,-2.5) - pow(f1+a1,-1.5)); |
6897 | 6915 | value += c2*(3.0*f2*pow(f2+a2,-2.5) - pow(f2+a2,-1.5)); |
6898 | 6916 | value += c3*(3.0*f3*pow(f3+a3,-2.5) - pow(f3+a3,-1.5)); |
@@ -6902,14 +6920,14 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction2ndDerivative(const Atom& atomA | ||
6902 | 6920 | } |
6903 | 6921 | else if(multipoleA == Qzz && multipoleB == Qxx){ |
6904 | 6922 | value = this->GetSemiEmpiricalMultipoleInteraction2ndDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6905 | - value *= pow(-1.0,4.0); | |
6923 | + //value *= pow(-1.0,4.0); | |
6906 | 6924 | } |
6907 | 6925 | else if(multipoleA == Qyy && multipoleB == Qzz){ |
6908 | 6926 | value = this->GetSemiEmpiricalMultipoleInteraction2ndDerivative(atomA, atomB, Qxx, multipoleB, rAB); |
6909 | 6927 | } |
6910 | 6928 | else if(multipoleA == Qzz && multipoleB == Qyy){ |
6911 | 6929 | value = this->GetSemiEmpiricalMultipoleInteraction2ndDerivative(atomB, atomA, multipoleB, multipoleA, rAB); |
6912 | - value *= pow(-1.0,4.0); | |
6930 | + //value *= pow(-1.0,4.0); | |
6913 | 6931 | } |
6914 | 6932 | // Eq. (64) in [DT_1977] |
6915 | 6933 | else if(multipoleA == Qzz && multipoleB == Qzz){ |
@@ -6922,24 +6940,24 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction2ndDerivative(const Atom& atomA | ||
6922 | 6940 | double c7 = -0.125; |
6923 | 6941 | double c8 = -0.125; |
6924 | 6942 | double c9 = 0.25; |
6925 | - double f1 = pow(rAB+2.0*DA-2.0*DB,2.0); | |
6926 | - double f2 = pow(rAB+2.0*DA+2.0*DB,2.0); | |
6927 | - double f3 = pow(rAB-2.0*DA-2.0*DB,2.0); | |
6928 | - double f4 = pow(rAB-2.0*DA+2.0*DB,2.0); | |
6929 | - double f5 = pow(rAB+2.0*DA ,2.0); | |
6930 | - double f6 = pow(rAB-2.0*DA ,2.0); | |
6931 | - double f7 = pow(rAB+2.0*DB ,2.0); | |
6932 | - double f8 = pow(rAB-2.0*DB ,2.0); | |
6933 | - double f9 = pow(rAB ,2.0); | |
6934 | - double a1 = pow(a,2.0); | |
6935 | - double a2 = pow(a,2.0); | |
6936 | - double a3 = pow(a,2.0); | |
6937 | - double a4 = pow(a,2.0); | |
6938 | - double a5 = pow(a,2.0); | |
6939 | - double a6 = pow(a,2.0); | |
6940 | - double a7 = pow(a,2.0); | |
6941 | - double a8 = pow(a,2.0); | |
6942 | - double a9 = pow(a,2.0); | |
6943 | + double f1 = ((rAB+2.0*DA-2.0*DB)*(rAB+2.0*DA-2.0*DB)); | |
6944 | + double f2 = ((rAB+2.0*DA+2.0*DB)*(rAB+2.0*DA+2.0*DB)); | |
6945 | + double f3 = ((rAB-2.0*DA-2.0*DB)*(rAB-2.0*DA-2.0*DB)); | |
6946 | + double f4 = ((rAB-2.0*DA+2.0*DB)*(rAB-2.0*DA+2.0*DB)); | |
6947 | + double f5 = ((rAB+2.0*DA)*(rAB+2.0*DA)); | |
6948 | + double f6 = ((rAB-2.0*DA)*(rAB-2.0*DA)); | |
6949 | + double f7 = ((rAB+2.0*DB)*(rAB+2.0*DB)); | |
6950 | + double f8 = ((rAB-2.0*DB)*(rAB-2.0*DB)); | |
6951 | + double f9 = (rAB*rAB); | |
6952 | + double a1 = (a*a); | |
6953 | + double a2 = (a*a); | |
6954 | + double a3 = (a*a); | |
6955 | + double a4 = (a*a); | |
6956 | + double a5 = (a*a); | |
6957 | + double a6 = (a*a); | |
6958 | + double a7 = (a*a); | |
6959 | + double a8 = (a*a); | |
6960 | + double a9 = (a*a); | |
6943 | 6961 | value = c1*(3.0*f1*pow(f1+a1,-2.5) - pow(f1+a1,-1.5)); |
6944 | 6962 | value += c2*(3.0*f2*pow(f2+a2,-2.5) - pow(f2+a2,-1.5)); |
6945 | 6963 | value += c3*(3.0*f3*pow(f3+a3,-2.5) - pow(f3+a3,-1.5)); |
@@ -6960,22 +6978,22 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction2ndDerivative(const Atom& atomA | ||
6960 | 6978 | double c6 = 0.125; |
6961 | 6979 | double c7 = 0.125; |
6962 | 6980 | double c8 = -0.125; |
6963 | - double f1 = pow(rAB+DA-DB,2.0); | |
6964 | - double f2 = pow(rAB+DA-DB,2.0); | |
6965 | - double f3 = pow(rAB+DA+DB,2.0); | |
6966 | - double f4 = pow(rAB+DA+DB,2.0); | |
6967 | - double f5 = pow(rAB-DA-DB,2.0); | |
6968 | - double f6 = pow(rAB-DA-DB,2.0); | |
6969 | - double f7 = pow(rAB-DA+DB,2.0); | |
6970 | - double f8 = pow(rAB-DA+DB,2.0); | |
6971 | - double a1 = pow(DA-DB,2.0) + pow(a,2.0); | |
6972 | - double a2 = pow(DA+DB,2.0) + pow(a,2.0); | |
6973 | - double a3 = pow(DA-DB,2.0) + pow(a,2.0); | |
6974 | - double a4 = pow(DA+DB,2.0) + pow(a,2.0); | |
6975 | - double a5 = pow(DA-DB,2.0) + pow(a,2.0); | |
6976 | - double a6 = pow(DA+DB,2.0) + pow(a,2.0); | |
6977 | - double a7 = pow(DA-DB,2.0) + pow(a,2.0); | |
6978 | - double a8 = pow(DA+DB,2.0) + pow(a,2.0); | |
6981 | + double f1 = ((rAB+DA-DB)*(rAB+DA-DB)); | |
6982 | + double f2 = ((rAB+DA-DB)*(rAB+DA-DB)); | |
6983 | + double f3 = ((rAB+DA+DB)*(rAB+DA+DB)); | |
6984 | + double f4 = ((rAB+DA+DB)*(rAB+DA+DB)); | |
6985 | + double f5 = ((rAB-DA-DB)*(rAB-DA-DB)); | |
6986 | + double f6 = ((rAB-DA-DB)*(rAB-DA-DB)); | |
6987 | + double f7 = ((rAB-DA+DB)*(rAB-DA+DB)); | |
6988 | + double f8 = ((rAB-DA+DB)*(rAB-DA+DB)); | |
6989 | + double a1 = ((DA-DB)*(DA-DB)) + (a*a); | |
6990 | + double a2 = ((DA+DB)*(DA+DB)) + (a*a); | |
6991 | + double a3 = ((DA-DB)*(DA-DB)) + (a*a); | |
6992 | + double a4 = ((DA+DB)*(DA+DB)) + (a*a); | |
6993 | + double a5 = ((DA-DB)*(DA-DB)) + (a*a); | |
6994 | + double a6 = ((DA+DB)*(DA+DB)) + (a*a); | |
6995 | + double a7 = ((DA-DB)*(DA-DB)) + (a*a); | |
6996 | + double a8 = ((DA+DB)*(DA+DB)) + (a*a); | |
6979 | 6997 | value = c1*(3.0*f1*pow(f1+a1,-2.5) - pow(f1+a1,-1.5)); |
6980 | 6998 | value += c2*(3.0*f2*pow(f2+a2,-2.5) - pow(f2+a2,-1.5)); |
6981 | 6999 | value += c3*(3.0*f3*pow(f3+a3,-2.5) - pow(f3+a3,-1.5)); |
@@ -6993,12 +7011,12 @@ double Mndo::GetSemiEmpiricalMultipoleInteraction2ndDerivative(const Atom& atomA | ||
6993 | 7011 | double c1 = 0.25; |
6994 | 7012 | double c2 = 0.25; |
6995 | 7013 | double c3 = -0.50; |
6996 | - double f1 = pow(rAB,2.0); | |
6997 | - double f2 = pow(rAB,2.0); | |
6998 | - double f3 = pow(rAB,2.0); | |
6999 | - double a1 = 2.0*pow(DA-DB,2.0) + pow(a,2.0); | |
7000 | - double a2 = 2.0*pow(DA+DB,2.0) + pow(a,2.0); | |
7001 | - double a3 = 2.0*pow(DA,2.0) + 2.0*pow(DB,2.0) + pow(a,2.0); | |
7014 | + double f1 = (rAB*rAB); | |
7015 | + double f2 = (rAB*rAB); | |
7016 | + double f3 = (rAB*rAB); | |
7017 | + double a1 = 2.0*((DA-DB)*(DA-DB)) + (a*a); | |
7018 | + double a2 = 2.0*((DA+DB)*(DA+DB)) + (a*a); | |
7019 | + double a3 = 2.0*(DA*DA) + 2.0*(DB*DB) + (a*a); | |
7002 | 7020 | value = c1*(3.0*f1*pow(f1+a1,-2.5) - pow(f1+a1,-1.5)); |
7003 | 7021 | value += c2*(3.0*f2*pow(f2+a2,-2.5) - pow(f2+a2,-1.5)); |
7004 | 7022 | value += c3*(3.0*f3*pow(f3+a3,-2.5) - pow(f3+a3,-1.5)); |